Application: Classical & Quantum Beamsplitters

Classical Beamsplitter
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Quantum Beamsplitter
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Quantum Beamsplitter
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Quantum input-output map
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Switch to Schrodinger Picture

2-mode vacuum
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General input state:
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General output state:  (Schridinger Picture)
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Example: One-photon input state
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Application: Classical & Quantum Beamsplitters

Switch to Schrodinger Picture

General input state: 2-mode vacuum
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The BS maps ﬁ;‘, a;: to linear combinations of af, ﬁ:

General output state:  (Schridinger Picture)
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Example: One-photon input state
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Note: This is a Photon number-Mode Entangled State
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Measurement of Subpicosecond Time Intervals between Two Photons by Interference
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A fourth-order interference technique has been used to measure the time intervals between two pho-
tons, and by implication the length of the photon wave packet, produced in the process of parametric
down-conversion. The width of the time-interval distribution, which is largely determined by an interfer-
ence filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 fs.

PACS numbers: 42.50.Bs, 42.65.Re

The usual way to determine the duration of a short
pulse of light is to superpose two similar pulses and to
measure the overlap with a device having a nonlinear
response.! The latter might, for example, make use of
the process of harmonic generation in a nonlinear medi-
um. Indeed, such a technique was recently used?® to
determine the coherence length of the light generated in
the process of parametric down-conversion.® The coher-
ence time was found to be of subpicosecond duration, as
predicted theoretically.* It is, however, in the nature of
the technique that it requires very intense light pulses
and would be of no use for the measurement of single
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phasized that the signal and idler photons have no
definite phase, and are therefore mutually incoherent, in
the sense that they exhibit no second-order interference
when brought together at detector D1 or D2. However,
fourth-order interference effects occur, as demonstrated
by the coincidence counting rate between D1 and D2.6-8
The experiment has some similarities to another, recently
reported, two-photon interference experiment in which
fringes were observed and measured, but without the use
of a beam splitter.

Although the sum frequency ,+w; is very well
defined in the experlment the individual down-shifted

Laecen lnama ctaamnaw brnitmbina thhnt il mamna

Lanmas nea alnm



Application: Classical & Quantum Beamsplitters

No. of coincidence counts in 10 min.
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FIG. 1. Outline of the experimental setup.
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Quantum Electrodynamics — QED




Quantum States of the Quantized Field

Amplitude and Phase

— Key characteristics of classical fields
— Need equivalents for quantum fields

[~

Classical Field l,:u
Elyt)= g&@e—iwt—hx fcc o
A
\xle'? 4 )

Quantum Field

El)s E,& iU PETYCS

L Non-Hermitian!
Separate in amplitude & phase?




Quantum States of the Quantized Field

Quadratures of the Classical Field — Take Two

uﬁi— $ Im
El(24) = an&u ¢ v X
"V'__J :
A ihy
complex amplitude for mode &'

Define
X(t) = Re [xglt)] = 5 [ 4z )] = QH)
Vi) = Tm [ 8)] = L {ag oo 1) ] = Pl#)

— same info, easier to work with -
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Quantum States of the Quantized Field
Quantum States of the Field in Mode &

Number States (Foch states)

ota [nd = ninS

P

MIXIn> =T =0
<K = <Al = 5 (nety)

P

AXAY =5 (n+h)

A
— HIGHLY non-classical, {E) =0
— VERY hard to make for large n
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Quantum States of the Quantized Field

Coherent States  (Quasi-classical states)

— Closest approximation to classical field
— See Cohen-Tannoudj, complement Gy

Definition: [2}> is coherent (quasiclassical) iff

> = R @) |2> = K(8), <Y = V)

CHEY =R (1)1 04
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Quantum States of the Quantized Field

Cohen-Tannoudji, Lecture Notes

e

equivalently

Definition: a state |x is coherent iff

O ALY

Finally, one can show

JX> = e

Physical properties

(X)) = Re [alo)emi %]
(&[—A)) = Tm [alo) e’“"“*] /\.\
@ >
DAY = YT =1 \ y}&t
DX DY = '/q




Quantum States of the Quantized Field

Cohen-Tannoudji, Lecture Notes

e

equivalently

Definition: a state |x) is coherent iff

O ALY

Finally, one can show

~ /9 o
JX>= e %, T In>

Physical properties
TR IRED

s
\ yxu)

(X)) = Re | c(o) e“‘“”‘]
(YI4)>= Tm|xio) e vt

AX ) =AY ) =%
AX DY = '/g

Photon statistics

N outcomes "
Measure N ® K gt
Pln)={xlnXnlxYy = LVTL e
B
mean I =[a&l%

Poisson distribution w/
variance An*= x|t

-

— Shot Noise

an =&
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Quantum States of the Quantized Field

Photon statistics

outcomes )

K
Measure N ® {O[Vl') &X[nXnlxy= —~——

e

Poisson distribution w/ {

.

lou""

variance Anh*=

- L
e

mean N =[«&l%

ks

AN = \rv“T — Shot Noise

More about Coherent States

TR IRED

/ \/.\ Coherent States
\. > as translated

Vacuum States?
Generating Coherent States from the Vacuum

Definition: D(_DO— X~ *

]

Unitary, equals translation

Glaubers formula (from BCH formula)

A A a A A
A+R B i[4R]

Q =
for [A[A8]]=[&1A8]]=0

N.'b >
[\V)
®
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Quantum States of the Quantized Field

More about Coherent States

YR TR(E)D

/ \/.\ Coherent States
‘ > as translated
\ 0> /i)

Vacuum States?
Generating Coherent States from the Vacuum

Definition: DUM" xot ——0("‘0

!

Unitary, equals translation

Glaubers formula (from BCH formula)

Apply to f_ oLa"" —-oc*a] = & *X
"t A A

A B [AR]

et ne _xn
Q D(o<§" l12/s. d&ema

Remember: 5\!0) =0 ®»
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', At
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Quantum States of the Quantized Field

Apply to ) DL&"-' —m*&] = X *x
AR T A
A & [ABR]

» D(NB“ ~ 112/ om’f ~o<*a

Remember: QIO =0 ®
~n =2 n
X0y = > (L”%tﬂ)_ o> = [0
v .

e

-l ¥/g ¢>(a"'I

D(m} 0> = e o>

—mt Cxa

-l

=e

-r

D) 10> = 1a>

OK - l'j(o(B generates (x> from the vacuum!
Rewrite:
KO- = (x-o*) X+ 1 (+aF)Y
N SR
where X'—'—(o(l)'\(lo(% VERCALS,

Glaubers formula again:

2y +.2xy _ 9YY 10Xy
B) = ' X XY/qewxer}’

Recall: é(q) = e:ig'p/ﬁ’ ® translationby g

§fp‘) =e""P9f/’& £ translation by ¢

where ﬂ:q"){’ P:Poy
e s . s & 9.p 2K
32%%X, P=RY
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Quantum States of the Quantized Field

This gives us

80y = §0%) = Y, Srp1-bey) - Y2

"
D) translates [
along X then?yY ®

Discussion —
How to do this?
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Quantum States of the Quantized Field

Coherent States from
Classical Dipole Radiation

Classical Dipole  A[t) = d coswt) @ =0
Quantized Field F£[2)= ) (G+a™)

Dipole-Field Interaction

H = B (878 ) + AN () (B 1)

) == B - et

Drive from T=0 to T

P

o 10Ty sinliw-w)Thr]

‘A
T)=e12?
o[T)= -1 5 ot
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Quantum States of the Quantized Field

Coherent States from
Classical Dipole Radiation

Classical Dipole  A[t) = d coswt) @ =0
Quantized Field F£[2)= ) (G+a™)

Dipole-Field Interaction

H oo (8% 4 1) + A A(E) (5%)

) == B - et

Drive from T=0 to T

P

o100l sinliw-w)Th]

‘A
T)=e12?
o[T)= -1 5 ot
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Quantum States of the Quantized Field

Coherent States from
Classical Dipole Radiation

Classical Dipole  A[t) = d coswt) @ =0
Quantized Field F£[2)= ) (G+a™)

Dipole-Field Interaction

H = B (878 ) + AN () (B 1)

) == B - et

Drive from T=0 to T

P

([T} = iAo g1 0-WIT)y sinllw-u)T/e]

I (o-e')/2.

Recall from Semi-Classical Laser Theory

O&Nﬂ) drives é(—ﬂ)
7

X
classical dipole coherent state
+ quantum + quantum

fluctuations fluctuations

For + )T we have a coherent state

A o((TJe’;“‘*"T)
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Quantum States of the Quantized Field

Recall from Semi-Classical Laser Theory

</&lfﬂ> drives é(-ﬂ)

7 LN
classical dipole coherent state
+ quantum + quantum

fluctuations fluctuations
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Quantum States of the Quantized Field

Odds and Ends — Thermal States

= Te [e~ kT ]

Squeezed States

Minimum uncertainty states w/assymmetry

g Z‘P(MMXV\I -/Z 'E/’&T\an[

~Boo/ kgt

ARAY =Yy, DXW)4DYE)
=(1-9) D a"InXnl, Q=€

Phase Squeezing

= T(&0) = z&lu-me}“'wmﬁffé

Amplitude Squeezing
= (4- QﬂZV’QL = ——
1"'9;_

Yabhy
\KHJ Me:n Photon Number:
7Y
L/

Photon Number Uncertainty:

(NS = (1-0) Zn g" = P4

(1-4)

22

Requires interaction with Nonlinear medium




Quantum States of the Quantized Field

Odds and Ends — Thermal States

Z="Tr[e” ﬁ/"'eT]

/
2= > Pminxn| = Zlu/ze— En kg 10 Xn |
n vi

=(1-9) D> a"InXnl, Q=¢"

Boo/ kgt

Mean Photon Number:

n=Tr(gN) = kilt-g)ahInXnIN &>
fe,n

= (4-9;)qu"'=-9'—
n

1-g

Photon Number Uncertainty:

(,:)L> = (1-9) anqm - 91_[_9

(1-4)

¢

P?+q 9t 9

Q Ant = (N -<RYE

(1-9)  (t-9)*  (1-a)

n= __?'___ Coherent State

4-—q Iimitl
An-= Ve =Vt 27

Optical Frequencies, Room Temperature:
A=A wm T=%0K
Q:=65x%10"" H~1p=6
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Quantum States of the Quantized Field

Odds and Ends — Quantum-Classical
Correspondence

Define a Translation Operator

A > _IEN ~Wta .
“ - + "~ o
-r;‘['t) € "h-xe 7 A D("KQ :wi)

i
Q

Use [6\, ﬁ(0'1")] = dF (&™) /da" to show

[6,T,] = 6T T = —ae™ ™t T

From this we get
(1) Field Observable

\/ .
- A A A A i h¥
Bl HE R - Tggde® hme )R
! ' 1.—-
= 2&0\2'& "_‘_ ,_| c +£QM‘(“t V)"'C‘.C.
\

C
= E.L"' EJ_LU’C,-I:) (2) Classical Field

(3) Field Observable

We also have [4'(4)) = '!10( (&) =07

Action of the unitary transformation T [4)

A r'S ~ n

B, =T WE T = ﬁf B (x4)

1% (£)) = T () 1K) = 16D

P

We can work with

A\

E, 1> or é_,_-—l-Ef_l(o(‘-t), 0>

Validates Semiclassical Optics
for strong Coherent Fields!
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Quantized Light — Matter Interactions

General Problem:

Quantum Quantized Modes

Atom ‘ ’ Of EM Field

T

Electric Dipole
Interaction

Starting Point: System Hamiltonian

_I>
n
I>

o
4

I>

>

+

'D:E’
n
e

E.' , |1 :energies, energy levels of the atom
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