Application: Classical \& Quantum Beamsplitters

Classical Beamsplitter

Coupled H \& V modes Linear symmetric input-output map

$$
\begin{aligned}
& E_{3}=t E_{1}+r E_{2} \\
& E_{4}=r E_{1}+t E_{2}
\end{aligned}
$$

Energy conservation requires

$$
\left|E_{2}\right|^{2}+\left|E_{2}\right|^{2}=\left|E_{3}\right|^{2}+\left|E_{4}\right|^{2}
$$

Choose

$$
\begin{aligned}
& E_{1}=E_{0} \quad E_{2}=0 \\
& \left|E_{3}\right|^{3}+\left|E_{4}\right|^{2}=E_{0}\left(|t|^{2}+|r|^{2}\right)
\end{aligned}
$$

Choose

From this it follows that

$$
\begin{aligned}
& |t|^{2}+|r|^{2}=1 \\
& t r^{*}+r t^{*}=0
\end{aligned}
$$

Classical input-output map

$$
\binom{E_{3}}{E_{4}}=\left(\begin{array}{ll}
t & r \\
r & t
\end{array}\right)\binom{E_{1}}{E_{2}}
$$

Quantum Beamsplitter

Heisenberg Picture

Classical field

$$
E_{\perp}(\vec{r}, t) \propto \alpha(t)
$$

Field Operators obey Maxwells Eq

Quantum equivalent

$$
\hat{E}_{\perp}^{(t)}(\vec{r}, t) \propto \hat{a}(t)
$$

Application: Classical \& Quantum Beamsplitters

From this it follows that

Classical input-output map

Quantum Beamsplitter

Heisenberg
Picture

Classical field
$E_{\perp}(\vec{r}, t) \propto \alpha(t)$

Field Operators obey
Maxwells Eqs

Quantum equivalent

Quantum Beamsplitter

Quantum input-output map

Invert Map

Switch to creation
operators

Application: Classical \& Quantum Beamsplitters

Quantum Beamsplitter

$$
\binom{\hat{E}_{3}}{\hat{E}_{4}}=\left(\begin{array}{ll}
t & r \\
r & t
\end{array}\right)\binom{\hat{E}_{1}}{\hat{E}_{2}}
$$

Quantum input-output map

$$
\binom{\hat{a}_{3}}{\hat{a}_{4}}=\left(\begin{array}{ll}
t & r \\
r & t
\end{array}\right)\binom{\hat{a}_{1}}{\hat{a}_{2}}
$$

Invert Map

$$
\begin{aligned}
& \hat{a}_{3}=t \hat{a}_{1}+r \hat{a}_{2} \\
& \hat{a}_{4}=r \hat{a}_{1}+t \hat{a}_{2}
\end{aligned} \quad\left\{\begin{array}{l}
\hat{a}_{1}=t^{*} \hat{a}_{3}+r^{*} \hat{a}_{4} \\
\hat{a}_{2}=r^{*} \hat{a}_{3}+t^{*} \hat{a}_{4}
\end{array}\right.
$$

Switch to creation operators

Switch to Schrödinger Picture

The BS maps $\hat{a}_{1}^{+}, \hat{a}_{2}^{+}$to linear combinations of $\hat{a}_{3}^{+}, \hat{a}_{\varphi}^{+}$

General output state: (Schrödinger Picture)

$$
\left|\psi_{\text {out }}\right\rangle=\sum_{n m} f_{n} \frac{1}{\sqrt{n!}}\left(t \hat{a}_{3}^{+}+r \hat{a}_{4}^{+}\right)^{n} g_{m} \frac{1}{\sqrt{m!}}\left(r \hat{a}_{3}+t \hat{a}_{4}\right)^{m}|0\rangle
$$

Example: One-photon input state

$$
\begin{aligned}
& \left|\psi_{\text {in }}\right\rangle=|1\rangle_{1}|0\rangle_{2}=\hat{a}_{1}^{+}|0\rangle \\
& \left|\psi_{\text {out }}\right\rangle=\left(t \hat{a}_{3}^{+}+\hat{a}_{4}^{+}\right)|0\rangle=t|1\rangle_{3}|0\rangle_{4}+r|0\rangle_{3}|1\rangle_{4}
\end{aligned}
$$

Application: Classical \& Quantum Beamsplitters

Switch to Schrödinger Picture
General input state:
2-mode vacuum

$$
\left|\psi_{i n}\right\rangle=\sum_{n m} f_{n} \frac{1}{\sqrt{n!}}\left(\hat{a}_{1}^{+}\right)^{n} g_{m} \frac{1}{\sqrt{m!}}\left(\hat{a}_{2}^{+}\right)^{m}|0\rangle
$$

The BS maps $\hat{a}_{1}^{+}, \hat{a}_{2}^{+}$to linear combinations of $\hat{a}_{3}^{+}, \hat{a}_{\varphi}^{+}$

General output state: (Schrödinger Picture)

$$
\left|\psi_{\text {out }}\right\rangle=\sum_{n m} \delta_{n} \frac{1}{\sqrt{n!}}\left(t \hat{a}_{3}^{+}+r \hat{a}_{4}^{+}\right)^{n} g_{m} \frac{1}{\sqrt{m!}}\left(r \hat{a}_{3}+t \hat{a}_{4}\right)^{m}|0\rangle
$$

Example: One-photon input state

$$
\begin{aligned}
& \left|\psi_{\text {in }}\right\rangle=|1\rangle_{1}|0\rangle_{2}=\hat{a}_{1}^{+}|0\rangle \\
& \left|\psi_{\text {out }}\right\rangle=\left(t \hat{a}_{3}^{+}+r \hat{a}_{4}^{+}\right)|0\rangle=t|1\rangle_{3}|0\rangle_{4}+r|0\rangle_{3}|1\rangle_{4}
\end{aligned}
$$

50/50 Beamsplitter

$$
\begin{gathered}
t=1 / \sqrt{2}, r=i / \sqrt{2} \\
\downarrow
\end{gathered}
$$

$$
\left.\mid \text { Hout }_{\text {out }}\right\rangle=\frac{1}{\sqrt{2}}\left(|1\rangle_{3}|0\rangle_{4}+i|0\rangle_{3}|1\rangle_{4}\right)
$$

Note: This is a Photon number-Mode Entangled State
(*) A coherent superposition of states w/ one photon in port 3 and zero in port 4, and zero in port 3 and one in port 4.

Can we assign states such as, e. g.

Viewed on their own, each port is in a mixed state

Application: Classical \& Quantum Beamsplitters

Measurement of Subpicosecond Time Intervals between Two Photons by Interference

C. K. Hong, Z. Y. Ou, and L. Mandel
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 10 July 1987)

Abstract

A fourth-order interference technique has been used to measure the time intervals between two photons, and by implication the length of the photon wave packet, produced in the process of parametric down-conversion. The width of the time-interval distribution, which is largely determined by an interference filter, is found to be about 100 fs , with an accuracy that could, in principle, be less than 1 fs .

PACS numbers: 42.50 .Bs, 42.65 .Re

The usual way to determine the duration of a short pulse of light is to superpose two similar pulses and to measure the overlap with a device having a nonlinear response. ${ }^{1}$ The latter might, for example, make use of the process of harmonic generation in a nonlinear medium. Indeed, such a technique was recently used ${ }^{2}$ to determine the coherence length of the light generated in the process of parametric down-conversion. ${ }^{3}$ The coherence time was found to be of subpicosecond duration, as predicted theoretically. ${ }^{4}$ It is, however, in the nature of the technique that it requires very intense light pulses and would be of no use for the measurement of single
phasized that the signal and idler photons have no definite phase, and are therefore mutually incoherent, in the sense that they exhibit no second-order interference when brought together at detector D1 or D2. However, fourth-order interference effects occur, as demonstrated by the coincidence counting rate between D1 and D2. ${ }^{6-8}$ The experiment has some similarities to another, recently reported, two-photon interference experiment in which fringes were observed and measured, but without the use of a beam splitter. ${ }^{6}$

Although the sum frequency $\omega_{1}+\omega_{2}$ is very well defined in the experiment, the individual down-shifted

Application: Classical \& Quantum Beamsplitters

FIG. 1. Outline of the experimental setup.

Quantum Electrodynamics - QED

Quantum States of the Quantized Field

Amplitude and Phase

- Key characteristics of classical fields
- Need equivalents for quantum fields

Classical Field
$E(z, t)=\varepsilon_{k}^{\varepsilon_{k}} \frac{\alpha}{\substack{\alpha}} e^{-i(\omega t-k z)}+c . c$.

Quantum Field

$$
\begin{aligned}
\hat{E}(z, t)=\varepsilon_{k} & \hat{\hat{a}} e^{-i(\omega t-k z)}+\text { H.C. } \\
& \uparrow \begin{array}{l}
\text { Non-Hermitian! } \\
\text { Separate in amplitude \& phase? }
\end{array}
\end{aligned}
$$

Consider operators

"phase"
"amplitude"
"Phase operators"

- Analogous to classical phases
- Non-Hermitian, NOT observables

Quadrature operators?

- Hermitian -> observables
- but ultimately too cumbersone

Quantum States of the Quantized Field

"Phase operators"

- Analogous to classical phases
- Non-Hermitian, NOT observables

Quadrature operators?

- Hermitian -> observables

- but ultimately too cumbersome

Quadratures of the Classical Field - Take Two

Define

$$
\begin{aligned}
& X(t)=\operatorname{Re}\left[\alpha_{k}(t)\right]=\frac{1}{2}\left[\alpha_{k}(t)+\alpha_{k}^{*}(t)\right]=Q(t) \\
& Y(t)=\operatorname{Im}\left[\alpha_{k}(t)\right]=\frac{1}{2 i}\left[\alpha_{k}(t)-\alpha_{k}^{*}(t)\right]=P(t)
\end{aligned}
$$

Quantization:

- same info, easier to work with -

Quantum States of the Quantized Field

Quantum States of the Quantized Field

Quantum States of the Field in Mode k

Number States (Foch states)

- HIGHLY non-classical, $\langle\hat{E}\rangle=0$
- VERV hard to make for large in

Coherent States (Quasi-classical states)

- Closest approximation to classical field
- See Cohen-Tannoudj, complement G_{v}

Definition: $\langle\psi\rangle$ is coherent (quasiclassical) iff

$$
\begin{gathered}
\langle\hat{X}| t)\rangle=\langle\psi| \hat{X}(t)|\psi\rangle=X(t),\langle\hat{Y}(t| \rangle=Y(t) \\
\langle\hat{H}(t)\rangle=h_{\omega}\left(|\alpha(t)|^{2}+1 / 2\right)
\end{gathered}
$$

Definition: $|\psi\rangle$ is coherent (quasiclassical) iff

Quantum States of the Quantized Field

Coherent States

(Quasi-classical states)

- Closest approximation to classical field
- See Cohen-Tannoudj, complement G_{V}

noting that $\hat{X}(t) \propto \hat{a}(t)=\hat{a}(0) e^{-i \omega t}$

\square
equivalently

Definition: $|4\rangle$ is coherent (quasiclassical) iff

Cohen-Tannoudji, Lecture Notes
equivalently
Definition: a state $|\alpha\rangle$ is coherent iff

$$
\hat{a}|\alpha\rangle=\alpha|\alpha\rangle
$$

Finally, one can show

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

Physical properties
$\langle\hat{X}(t)\rangle=\operatorname{Re}\left[\alpha(0) e^{-i \omega t}\right]$ $\langle\dot{\tilde{V}}(t)\rangle=\operatorname{Im}\left[\alpha(0) e^{-i \omega t}\right]$

$$
\Delta X(t)=\Delta Y(t)=1 / 2
$$

$$
\Delta X \Delta Y=1 / 4
$$

Quantum States of the Quantized Field

Cohen-Tannoudji, Lecture Notes
equivalently
Definition: a state $|\alpha\rangle$ is coherent iff

$$
\hat{a}|\alpha\rangle=\alpha|\alpha\rangle
$$

Finally, one can show

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

Physical properties
$\langle\hat{X}(t)\rangle=\operatorname{Re}\left[\alpha(0) e^{-i \omega t}\right]$ $\langle\dot{\underline{V}}(t)\rangle=\operatorname{Im}\left[\alpha(0) e^{-i \omega t}\right]$

$$
\Delta X(t)=\Delta Y(t)=1 / 2
$$

$$
\Delta X \Delta Y=1 / 4
$$

Photon statistics

Measure $\hat{N} \Rightarrow\left\{\begin{array}{l}\text { outcomes } n \\ P(n)=\langle\alpha| n \times n|\alpha\rangle=\frac{|\alpha|^{2 n}}{n!} e^{-|\alpha|^{2}}\end{array}\right.$

Poisson distribution $w / \begin{cases}\text { mean } & \bar{n}=|\alpha|^{2} \\ \text { variance } & \Delta n^{2}=|\alpha|^{2}\end{cases}$

$$
\Delta n=\sqrt{\bar{n}} \quad-\text { Shot Noise }
$$

Quantum States of the Quantized Field

Photon statistics

Measure $\hat{N} \Rightarrow\left\{\begin{array}{l}\text { outcomes } n \\ P(n)=\langle\alpha| n \times n|\alpha\rangle=\frac{|\alpha|^{2 n}}{n!} e^{-|\alpha|^{2}}\end{array}\right.$

Poisson distribution w/ $\begin{cases}\text { mean } & \bar{n}=|\alpha|^{2} \\ \text { variance } & \Delta n^{2}=|\alpha|^{2}\end{cases}$
$\Delta n=\sqrt{\bar{n}} \quad$ - Shot Noise

More about Coherent States

Coherent States as translated Vacuum States?

Generating Coherent States from the Vacuum

Glaubers formula (from BCH formula)

$$
\begin{array}{ll}
& e^{\hat{A}+\hat{B}}=e^{\hat{A}} e^{\hat{B}} e^{\frac{1}{2}[\hat{A}, \hat{B}]} \\
\text { for } \quad[\hat{A},[\hat{A}, \hat{B}]]=[\hat{B},[\hat{A}, \hat{B}]]=
\end{array}
$$

Quantum States of the Quantized Field

More about Coherent States

Coherent States as translated Vacuum States?

Generating Coherent States from the Vacuum

Definition: $\hat{D}(\alpha)=e^{\alpha \hat{a}^{+}-\alpha * \hat{a}}$

Unitary, equals translation

Glaubers formula (from BCH formula)

$$
\begin{gathered}
e^{\hat{A}+\hat{B}}=e^{\hat{A}} e^{\hat{B}} e^{\frac{1}{2}[\hat{A}, \hat{B}]} \\
\text { for } \quad[\hat{A},[\hat{A}, \hat{B}]]=[\hat{B},[\hat{A}, \hat{B}]]=0
\end{gathered}
$$

Apply to

$$
\hat{D}(\alpha)=e^{-|\alpha|^{2} / 2} e^{\alpha \hat{a}^{+}} e^{-\alpha^{*} \hat{a}}
$$

Remember: $\hat{a}|0\rangle=0$

$$
\begin{aligned}
& e^{-\alpha^{*} \hat{a}}|0\rangle=\sum_{n} \frac{\left(-\alpha^{*} \hat{a}\right)^{n}}{n!}|0\rangle=|0\rangle \\
& \hat{D}(\alpha)|0\rangle= e^{-|\alpha|^{2} / 2} e^{\alpha \hat{a}^{+}}|0\rangle \\
&= e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\left(\alpha \hat{a}^{+}\right)^{n}}{n!}|0\rangle \\
&= e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle=|\alpha\rangle \\
& \hat{D}(\alpha)|0\rangle=|\alpha\rangle
\end{aligned}
$$

Quantum States of the Quantized Field

Apply to

$$
\hat{D}(\alpha)=e^{-|\alpha|^{2} / 2} e^{\alpha \hat{a}^{+}} e^{-\alpha^{*} \cdot \hat{a}}
$$

Remember: $\hat{a}|0\rangle=0$

$$
\begin{aligned}
& e^{-\alpha^{*}} \hat{a}|0\rangle=\sum_{n} \frac{\left(-\alpha^{*} \hat{a}\right)^{n}}{n!}|0\rangle=|0\rangle \\
& \hat{D}(\alpha)|0\rangle=e^{-|\alpha|^{2} / 2} e^{\alpha \hat{a}^{+}}|0\rangle \\
&=e^{-|\alpha|^{2}} \sum_{n} \frac{\left(\alpha \hat{a}^{+}\right)^{n}}{n!}|0\rangle \\
&=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle=|\alpha\rangle \\
& \hat{D}(\alpha\rangle|0\rangle=|\alpha\rangle
\end{aligned}
$$

OK - $\hat{D}(\alpha)$ generates $\langle\alpha\rangle$ from the vacuum!
Rewrite:

$$
\begin{aligned}
\alpha \hat{a}^{+}-\alpha^{*} \hat{a} & =\left(\alpha-\alpha^{*}\right) \hat{X}+i\left(\alpha+\alpha^{*}\right) \hat{Y} \\
& =i 2 Y \hat{X}+i 2 \bar{X} \hat{Z}
\end{aligned}
$$

where $X=\langle\alpha| \hat{X}|\alpha\rangle, Y=\langle\alpha| \hat{Y}|\alpha\rangle$

Glaubers formula again:

$$
\hat{D}(\alpha)=e^{i 2 Y \hat{X}+i 2 \bar{X} \hat{Y}}=e^{-X Y / 4} e^{i 2 Y \hat{X}} e^{i 2 X \hat{Y}}
$$

Recall: $\hat{S}(q)=e^{-i q \hat{p} / \hbar} \Rightarrow$ translation by q $\hat{S}(p)=e^{-i p \hat{q} / h} \Rightarrow$ translation by p
where $\quad q=q_{0} X, p=p_{0} I$

$$
\hat{q}=q_{0} \hat{X}, \quad \hat{p}=p_{0} \hat{y}
$$

Quantum States of the Quantized Field

This gives us

$$
\hat{S}(q)=\hat{S}(X)=e^{i 2 x \hat{Y}}, \hat{S}(p)=\hat{S}(\gamma)=e^{i 2 Y \hat{X}}
$$

$\hat{D}(\alpha)$ translates along X then Y

Discussion How to do this?

Quantum States of the Quantized Field
Coherent States from Classical Dipole Radiation

Classical Dipole $d(t)=d_{0} \cos (\omega t)$ @ $t=0$
Quantized Field $\quad \hat{E}(z)=\varepsilon_{\ell_{k}}\left(\hat{a}+\hat{a}^{+}\right)$
Dipole-Field Interaction

$$
\begin{gathered}
\hat{H}=\hbar \omega\left(\hat{a}^{+} \hat{a}+1 / 2\right)+\hbar \lambda(t)\left(\hat{a}+\hat{a}^{+}\right) \\
\lambda(t)=-\frac{d(t) \xi_{k}}{\hbar}=\lambda_{0} \cos (\omega t) \\
\text { Drive from } t=0 \text { to } T
\end{gathered}
$$

$$
\alpha(T)=-i \frac{\lambda_{0}}{2} e^{-i\left(\omega-\omega^{\prime}\right) T / 2} \frac{\sin \left[\left(\omega-\omega^{\prime}\right) T / 2\right]}{\left(\omega-\omega^{\prime}\right] / 2}
$$

Quantum States of the Quantized Field

Coherent States from Classical Dipole Radiation

```
Classical Dipole }d(t)=\mp@subsup{d}{0}{}\operatorname{cos}(\omegat) @t=
Quantized Field }\hat{E}(z)=\mp@subsup{\varepsilon}{b}{}(\hat{a}+\mp@subsup{\hat{a}}{}{+}
Dipole-Field Interaction
\[
\hat{H}=\hbar \omega\left(\hat{a}^{+} \hat{a}+1 / 2\right)+\hbar \lambda(t)\left(\hat{a}+\hat{a}^{+}\right)
\]
\[
\lambda(t)=-\frac{d(t) \varepsilon_{k}}{\hbar}=\lambda_{0} \cos (\omega t)
\]
\[
\text { Drive from } t=0 \text { to } T
\]
```

$$
\alpha(T)=-i \frac{\lambda_{0}}{2} e^{-i\left(\omega-\omega^{\prime}\right) T / 2} \frac{\sin \left[\left(\omega-\omega^{\prime}\right) T / 2\right]}{\left(\omega-\omega^{\prime}\right) / 2}
$$

Quantum States of the Quantized Field

Coherent States from Classical Dipole Radiation

Classical Dipole $\quad d(t)=d_{0} \cos (\omega t)$ @ $t=0$
Quantized Field $\quad \hat{E}(z)=\varepsilon_{\text {el }}\left(\hat{a}+\hat{a}^{+}\right)$
Dipole-Field Interaction

$$
\hat{H}=\hbar \omega\left(\hat{a}^{+} \hat{a}+1 / 2\right)+\hbar \lambda(t)\left(\hat{a}+\hat{a}^{+}\right)
$$

$$
\lambda(t)=-\frac{d(t) \varepsilon_{k}}{\hbar}=\lambda_{0} \cos (\omega t)
$$

Drive from $t=0$ to T

$$
\alpha(T)=-i \frac{\lambda_{0}}{2} e^{-i\left(\omega-\omega^{\prime}\right) T / 2} \frac{\sin \left[\left(\omega-\omega^{\prime}\right) T / 2\right]}{\left(\omega-\omega^{\prime}\right) / 2}
$$

Recall from Semi-Classical Laser Theory

$\langle\hat{p}(t)\rangle$ drives	$\hat{E}(t)$
π	
classical dipole	coherent state + quantum fluctuations
++ quantum fluctuations	

For $t>T$ we have a coherent state

$$
\alpha(t)=\alpha(T) e^{-i \omega(t-T)}
$$

Quantum States of the Quantized Field

Recall from Semi-Classical Laser Theory

Quantum States of the Quantized Field

Squeezed States

Minimum uncertainty states w/assymmetry

$$
\Delta X \Delta Y=1 / 4, \quad \Delta X(t) \neq \Delta Y(t)
$$

Phase Squeezing

Amplitude Squeezing

Requires interaction with Nonlinear medium

Odds and Ends - Thermal States

$$
\begin{aligned}
\hat{\rho} & \left.=\sum_{n} P(n)|n X n|=\frac{1}{z} \sum_{n}^{z} e^{-E_{n} / k_{B} T} \right\rvert\, n e^{\left.-\hat{\hat{H} / k_{B} T}\right]} \\
& =(1-q) \sum_{n} q^{n}|n X n|, q=e^{-\hbar \omega / k_{B} T}
\end{aligned}
$$

Mean Photon Number:

$$
\left.\begin{array}{rl}
\bar{n} & =\operatorname{Tr}(\hat{\rho} \hat{N})
\end{array}=\sum_{k, n}\langle k|(1-q) q^{h}|n \times n| \hat{N}|k\rangle\right\rangle=(1-q) \sum_{n} n q^{n}=\frac{q}{1-q}
$$

Photon Number Uncertainty:

$$
\left\langle\hat{N}^{2}\right\rangle=(1-q) \sum_{n} n^{2} q^{n}=\frac{q^{2}+q}{(1-q)}
$$

Quantum States of the Quantized Field

Odds and Ends - Thermal States

$$
\begin{aligned}
\hat{\rho} & =\sum_{n} P(n)|n X n|=\frac{1}{z} \sum_{n} e^{-E_{n} / k_{B} T / k_{g} T}\left|n X_{n}\right| \\
& =(1-q) \sum_{n} q^{n}|n X n|, \quad q=e^{-\hbar \omega / k_{B} T}
\end{aligned}
$$

Mean Photon Number:

$$
\begin{aligned}
\bar{n}=\operatorname{Tr}(\hat{S} \hat{N}) & =\sum_{k, n}\langle k|(1-q) q^{n}|n \times n| \hat{N}|k\rangle \\
& =(1-q) \sum_{n} n q^{n}=\frac{q}{1-q}
\end{aligned}
$$

Photon Number Uncertainty:

$$
\left\langle\hat{N}^{2}\right\rangle=(1-q) \sum_{n} n^{2} q^{n}=\frac{q^{2}+q}{(1-q)}
$$

$$
\begin{aligned}
\Delta n^{2} & =\left\langle\hat{N}^{2}\right\rangle-\langle\hat{N}\rangle^{2} \\
& =\frac{q^{2}+q}{(1-q)}-\frac{q^{2}}{(1-q)^{2}}=\frac{q}{(1-q)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{n}=\frac{q}{1-q} \quad \begin{array}{c}
\text { Coherent state } \\
\text { limit } \\
\text { 百 }
\end{array} \\
& \Delta n=\frac{\sqrt{q}}{1-q}=\sqrt{\bar{n}(\bar{n}+1)} \geqslant \sqrt{\bar{n}}
\end{aligned}
$$

Optical Frequencies, Room Temperature:

$$
\begin{aligned}
& \lambda=1 \mu \mathrm{~m}, \quad T=300 \mathrm{~K} \\
& q=6.5 \times 10^{-6}, \quad \bar{n} \sim 10^{-6}
\end{aligned}
$$

Quantum States of the Quantized Field

Odds and Ends - Quantum-Classical Correspondence

Define a Translation Operator

$$
\hat{T}_{\alpha}(t)=e^{\alpha^{*}} e^{i \omega t} \hat{a}-\alpha e^{-i \omega t} \hat{a}^{t}=\hat{D}\left(-\alpha e^{-i \omega t}\right)
$$

Use $\left[\hat{a}_{1} \hat{F}\left(\hat{a}^{+}\right)\right]=d F\left(\hat{a}^{+}\right) / d \hat{a}^{+}$to show

$$
\begin{aligned}
& {\left[\hat{a}_{1} \hat{T}_{\alpha}\right]=\hat{a} \hat{T}_{\alpha}-\hat{T}_{\alpha} \hat{a}=-\alpha e^{-i \omega t} T_{\alpha}} \\
& \Rightarrow \hat{T}_{\alpha} \hat{a}=\hat{a} \hat{T}_{\alpha}+\alpha e^{-i \omega t} \hat{T_{\alpha}} \\
& \Rightarrow \hat{T}_{\alpha} \hat{a} \hat{T}_{\alpha}^{+}=\hat{a}+\alpha e^{-i \omega t}
\end{aligned}
$$

From this we get
(1) Field Observable

$$
\begin{aligned}
\hat{E}_{\perp}^{\prime} & =\hat{T}_{\alpha} \hat{E}_{\perp} \hat{T}_{\alpha}^{+}=\hat{T}_{\alpha}\left(\varepsilon_{k} \hat{a} e^{i \vec{b} \cdot \tilde{r}_{2}}+H . C .\right) \hat{T}_{\alpha}^{+} \\
& =\varepsilon_{k} \hat{a} e^{i \vec{b} \cdot \vec{r}^{\prime}}+H . C .+\varepsilon_{k} \alpha e^{-i\left(\omega t-\tilde{k}^{2} \cdot \vec{r}\right)}+C_{.} . C_{1} \\
& =\hat{E}_{\perp}+E_{\perp}^{C L}(\alpha, t) \quad \text { (2) Classical Field }
\end{aligned}
$$

We also have $\left|\psi^{\prime}(t)\right\rangle=\hat{T}_{\alpha}|\alpha(t)\rangle=|0\rangle$

Action of the unitary transformation $\hat{T}_{\alpha}(t)$

$$
\begin{aligned}
& \hat{E}_{\perp}^{\prime}=\hat{T}_{\alpha}(t) \hat{E}_{\perp} \hat{T}_{\alpha}(t)^{+}=\hat{E}_{\perp}+E_{\perp}^{(\alpha}(\alpha, t) \\
& \left|\psi^{\prime}(t)\right\rangle=T_{\alpha}(t| | \alpha(t)\rangle=|0\rangle
\end{aligned}
$$

We can work with

$$
\hat{E}_{\perp},|\alpha(t)\rangle \text { or } \hat{E}_{\perp}+E_{\perp}^{C l}(\alpha, t),|0\rangle
$$

Validates Semiclassical Optics for strong Coherent Fields!

Quantized Light - Matter Interactions

General Problem:

Electric Dipole Interaction

Starting Point: System Hamiltonian

$$
\begin{equation*}
\hat{H}=\hat{H}_{F}+\hat{H}_{A}+\hat{H}_{A F} \tag{1}
\end{equation*}
$$

$\hat{H}_{F}=\sum_{\vec{k}} \hbar \omega_{\vec{k}}\left(\hat{a}_{\vec{k}}^{+} \hat{a}_{\vec{k}}+1 / 2\right)$
Field
$\hat{H}_{A}=\sum_{i} E_{i}\left|i X_{i}\right|=\sum_{i} E_{i} \hat{\sigma}_{i i} \quad$ Atom
$\hat{H}_{A F}=-\hat{\vec{r}} \cdot \hat{\vec{E}}(\vec{r}, t) \quad E D$ interaction
$E_{i},|i\rangle$: energies, energy levels of the atom

