Application: Classical & Quantum Beamsplitters
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Quantum Beamsplitter
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Switch to Schrodinger Picture

General input state: 2-mode vacuum
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General output state:  (Schridinger Picture)
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Example: One-photon input state
[, 5 = 113,105, =G loY

Yo ? = (6057 +0D7) [0 = £1ad10), +r o) 10,

50/50 Beamsplitter Ey

t=t/‘)’j_, V‘:'./\jz E,— > Eq
A
! s

Yyt = \—r‘z(lﬁgo)‘fﬁloglﬁq)

Note: This is a Photon number-Mode Entangled State

(*) A coherent superposition of states w/
one photon in port 3 and zero in port 4,
and zero in port 3 and one in port 4.

Can we assign states such as, e. g.

to port 3
|

to port 4

Viewed on their own, each portisina
mixed state




Application: Classical & Quantum Beamsplitters

50/50 Beamsplitter Ey
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Note: This is a Photon number-Mode Entangled State

(*) A coherent superposition of states w/
one photon in port 3 and zero in port 4,
and zero in port 3 and one in port 4.

Can we assign states such as, e. g.

to port 3

to port 4

Viewed on their own, each portisina
mixed state

Example: Two-photon input state, 50/50 BS
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Experiment:
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A fourth-order interference technique has been used to measure the time intervals between two pho-
tons, and by implication the length of the photon wave packet, produced in the process of parametric
down-conversion. The width of the time-interval distribution, which is largely determined by an interfer-
ence filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 fs.

PACS numbers: 42.50.Bs, 42.65.Re

The usual way to determine the duration of a short
pulse of light is to superpose two similar pulses and to
measure the overlap with a device having a nonlinear
response.! The latter might, for example, make use of
the process of harmonic generation in a nonlinear medi-
um. Indeed, such a technique was recently used?® to
determine the coherence length of the light generated in
the process of parametric down-conversion.® The coher-
ence time was found to be of subpicosecond duration, as
predicted theoretically.* It is, however, in the nature of
the technique that it requires very intense light pulses
and would be of no use for the measurement of single

~ a1 a1 1 1 o S B R [P E PO

phasized that the signal and idler photons have no
definite phase, and are therefore mutually incoherent, in
the sense that they exhibit no second-order interference
when brought together at detector D1 or D2. However,
fourth-order interference effects occur, as demonstrated
by the coincidence counting rate between D1 and D2.6-8
The experiment has some similarities to another, recently
reported, two-photon interference experiment in which
fringes were observed and measured, but without the use
of a beam splitter.

Although the sum frequency ,+w; is very well
defined in the experlment the individual down-shifted
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No. of coincidence counts in 10 min.
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FIG. 1. Outline of the experimental setup.
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Quantum Electrodynamics — QED




Quantum States of the Quantized Field

Amplitude and Phase

— Key characteristics of classical fields
— Need equivalents for quantum fields

[~

Classical Field l,-:u
Elyt) = & [ae Wt %2) o e o
A
\xle'? ¢ )

Quantum Field

El)s E,& iU PETYCS

T_ Non-Hermitian!
Separate in amplitude & phase?

Consider operators

Q= (N+1)2eXp(ig) * eptip) = (R+1)"La
0= ep(-ig) (N 1) expl-9)= GF(R+1Y%A

“phase” “amplitude”

“Phase operators”
explit)exp(~@Y=1  explip)= eXpl-i?)*
N i ) . A . -1
expl-iglexplin) = 1 = [eXot-i)]

— Analogous to classical phases
— Non-Hermitian, NOT observables

Quadrature operators?

cosq = i[@'ép(; +6<'p(-:q>)]

(m-t) 264+ 0 [N+1) ”?-]

-
-

Ml-

Simg =

| exptip) - exo(ig)]
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¥
='1L[(~+J b5t (R '/2]

— Hermitian -> observables
— but ultimately too cumbersome

Let’s rewind and try again...
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“Phase operators”
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— Hermitian -> observables
— but ultimately too cumbersome

Let’s rewind and try again...

Quadratures of the Classical Field — Take Two
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—_——

A

complex amplitude for mode &'

Define
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— same info, easier to work with -
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Quadratures of the Classical Field — Take Two

El(24) = an&[a o etie e «
W—/ :
A AN :
complex amplitude for mode ¢’ + Re
X. /

Define
X(t) = Re [g4)] =7 [ W)+t ()] = QH)
Vi) = Tm[Ag 4] = L [wg 0o 14)] = Pl

A
Quantization: X-> 0, ¥ a*
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— same info, easier to work with —

Quantum States of the Field in Modexe

Number States (Foch states)

ota [nd = ninS

P

MIXIn> =gy =o
KNy = Ty = 3 neth)

P

AXAY =5 (n+h)

A
— HIGHLY non-classical, {E) =0
— VERY hard to make for large n
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Quantum States of the Field in Mode/?e

Number States (Foch states)

0o [nD =ninS

-

XD =nTnd =0
<A1 KMNY = Ty = L lnelh)

— -

AXAY =5 (ne4)

'y
— HIGHLY non-classical, {E) =0
— VERY hard to make for large n

Coherent States  (Quasi-classical states)

— Closest approximation to classical field
— See Cohen-Tannoudj, complement Gy

Definition: [2}> is coherent (quasiclassical) iff

> = R @) |2> = K(8), <Y = V)

CHEY = e (Ix )1+ 14 )

noting > Ay A ~iE
that XH) <« alE) = a(0)e

- V(L) o Oft) = Oto) eI WE

equivalently

Definition: [% > is coherent (quasiclassical) iff
@ <80V = <AL = «L[0)
@) <Aoo = L) x (o)
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Coherent States  (Quasi-classical states)

— Closest approximation to classical field
— See Cohen-Tannoudj, complement G

Definition: [2}> is coherent (quasiclassical) iff

K> = R 2S = X(8), <Y A =YH)

(AW > B ()14 )

noting sy o Gitg) = (o)Wt

that
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equivalently

Definition: [% > is coherent (quasiclassical) iff
1) {80Y> = <AL = o[0)
2)  (GT)&lo)) = oY (o)

Cohen-Tannoudji, Lecture Notes

e

equivalently

Definition: a state |x is coherent iff

O ALY

Finally, one can show

JX> = e

Physical properties
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