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OPTI 544          Final Exam, May 11, 2023       Jessen 

Solution Set 
 
Problem I 
 
(a) The Ramsey Method of Separated Oscillatory Fields is a sequence of two short and intense

 pulses that together will transfer a 2-level atom from the south pole to the north pole of 
the Bloch sphere.  If the  pulses are separated by a long period with no fields present, then 
any detuning between the atomic transition frequency and the frequency of the driving field 
will cause the Bloch vector to precess in the equatorial plane between the pulses.  If the 
precession is substantial then the 2nd pulse will not transfer the atom to the excited state, and 
a subsequent measurement will show reduced excited state population.  The "Ramsey trick" is 
commonly used in atomic clocks, where one wants to compare the frequency of the driving 
field to the transition frequency of an *unperturbed* atom. 

 
(b) The Hong-Ou-Mandel experiment explores the interference of indistinguishable single photon 

wave packets.  The experiment starts with a spontaneous parametric down conversion event 
that splits a photon of frequency  into two separate photons at frequency .  The single-
photon wave packets are then recombined on a beam splitter where they interfere, and the 
statistics of the photons emerging in the beam splitter outputs is measured with avalanche 
photodetectors. If the input wave packets overlap perfectly on the beams splitter then 
coincidence detections (one photon emerging in each port) are never observed. This indicates 
that interference always results in pairs of photons emerging in either one or the other output. 
This is variously described as "photon bunching" or "photons are bosons".  If one wave packet 
is delayed relative to the other before recombination on the beam splitter, the two photons 
become distinguishable by their arrival time.  This causes the Hong-Ou-Mandel interference 
to disappear and the photons to appear at random in either output port. 

 
(c) Wheelers Delayed Choice experiment is an experiment that explores the wave-particle duality 

of photons. At its core is a Mach-Zender interferometer consisting of two beam splitters, the 
second of which can be inserted or removed.  With the 2nd. beam splitter (BS) in place, the 
photon behaves as a wave and two-path interference is seen when changing the length of one 
path relative to the other.  Without the 2nd BS the photon behaves as a particle, always 
emerging in one output port or the other with 50/50 probability, irrespective of the path length 
difference. Central to the experiment is the ability to insert or remove the 2nd BS *at random* 
and  *after* the photon has passed the 1st BS but *before* it arrives at the 2nd BS.  This rules 
out any possibility that the wave or particle nature of the photon is determined by the time it 
encounters the first BS.  That in turn allows us to conclude that a photon is both a particle and 
wave, and that we always see the property that our measurement is designed to reveal. 
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Problem II 
 
(a) The Observables associated with energy and photon number are closely related: 

  
 The mean energy E of the coherent state is the expectation value of , which in turn is

, where  is the mean photon number. We have dropped the zero point 
energy, in the expectation that it is negligible when the total energy is in the macroscopic domain. 

 
 Given the above, we have  . 
  

 First,   

 

  Second,      

 Check:   so it is OK to drop the zero point energy. 

 
(b) A coherent state is neither an eigenstate of energy nor an eigenstate of photon number.  Thus, when 

given a coherent state, a measurement of will not have a deterministic outcome. Instead, the 
measurement will return one of many possible values n, of which some are more likely than others. 

 
Frequentist's perspective:   
If we prepare a large number of wave packets in identical coherent states  and subsequently do a 
measurement of the photon number on each of them, the outcomes n will will be drawn from a 
statistical distribution that reflects the admixture of different n-photon states in . The mean value 
of the measurement outcomes will be . 
 
Bayesianist's perspective: 
If we prepare a wave packet in the coherent state  and subsequently do a measurement of the 
photon number, we know from our prior information (the state is ) that different outcomes n are 
possible and will occur with probabilities that reflect the admixture of n-photon states in . The 
expectation (mean) value of the measurement will be 

Ĥ = !ω   ( N̂ +1 2  ) .
Ĥ

Ĥ = !ω   N̂ N̂ = n

Ĥ = !ω   N̂ ⇒ E = !ω  ×  n⇒ n = E !ω

!ω =  1.05×10 −34Js ×  2π Cλ = 2π ×1.05 ×10 −34Js × 3×108m s −1

10 −6m
= 1.98 ×10 −19J

n = E
!ω = 1×10 −12J

1.98 ×10 −19J
= 5.05 ×106

5.05 ×106 >> 12
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Problem III 
 
(a) Given the coherent state input  , the output will be  
 
    
 
 The output is a product of a state vector for port 3 and a state vector for port 4, 

, so there is no photon number - mode entanglement. 
 

(b) With an input  , the general input-output map for the beam 

splitter tells us that we can write the output as 
 

    

  
 Using the binomial expansion, we have 
 

  

 
 where we have taken the calculation all the way through.  Note, however, that we can tell already 

from (*) that the output will be a superposition of states with  photons emerging in port 3 
and  photons emerging in port 4. 

    
(c) The output in III(a) is a product state with no correlation between photon numbers in the two ports.   
 
 By contrast, III(b) is a very complex superposition state. By inspection, we see that contains 

groupings of states with  photons emerging in port 3 and  photons emerging in port 4, in 
coherent superposition with  photons emerging in port 3 and  photons emerging in port 4. 
Each of these doublet of states have stong photon number-mode entanglement.  As a result, there 
is no way to describe the overall output as a product of a state vector for port 3 and a state vector 
for port 4, and we conclude that is highly photon number-mode entangled.  

 
(d) The result from (a) tells us that a coherent state remains a coherent state when propagating through 

a lossy medium, here modeled as a beamsplitter.   
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+ + râ4+)n
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 By contrast, consider what would happen if, in (c), we were to place a photon number resolving 
detector in port 4, make a photon number measurement, and throw away the outcome. In that case 
the correlations between photon numbers in the output ports (  photons in port 4 means  
photons in port 3) will reduce the state emerging in port 3 to an incoherent mixture of photon 
number states. This tells us that number states do not remain number states when propagating 
through a lossy medium. 

n n−k




