Solution Set, OPTI 544 2nd Midterm Exam, April 12, 2023

Problem I

(a) We can copy the Bloch sphere shown on page 3 of the notes "Vector Model..."
(b) If χ is real and positive $(\varphi=0)$ and $\Delta=0$, the OBE's without relaxation take the form

$$
\dot{u}=0, \quad \dot{v}=\chi w, \quad \dot{w}=-\chi v
$$

(c) With no coherent drive $(\chi=0)$, detuning ($\Delta=0$), or relaxation other than spontaneous decay $\left(\beta=A_{21} / 2\right)$, the OBE's take the form

$$
\dot{u}=-\beta u, \quad \dot{v}=-\beta v, \quad \dot{w}=-A_{21}(w+1)
$$

(d) The OBE's in (b) correspond to a torque $\vec{Q}=-\chi \vec{i}$ that points in the $-\vec{i}$ direction. If we apply a π pulse, a Bloch vector initially pointing to the excited state $|2\rangle$ will rotate clockwise in the $\vec{j}-\vec{k}$ by an angle π and point to the ground state $|1\rangle$. This is the red trajectory on the Bloch sphere at right.
The OBE's in (c) describe a situation where initially $u=v=0$ and remain there. The last equation tells us that w decays exponentially from $w=1$ to $w=-1$, moving along the k-axis the entire time. This is the purple trajectory on the Bloch sphere at right.

Problem II

(a) The two-mode input state is $\left|\Psi_{\text {in }}\right\rangle=\frac{1}{\sqrt{2}}\left(a_{1}^{+}\right)^{2}|0\rangle=|2\rangle_{1}|0\rangle_{2}$, where $|0\rangle$ is the two-mode vacuum.
(b) The output can be found using the input-output map of the beamsplitter. This allows us to express the creation operators on the input side in terms of creation operators on the output side. Thus,

$$
\left|\Psi_{\text {in }}\right\rangle \rightarrow\left|\Psi_{\text {out }}\right\rangle=\frac{1}{\sqrt{2}}\left(t \hat{a}_{3}^{+}+r \hat{a}_{4}^{+}\right)^{2}|0\rangle
$$

where we have used $t=1 / \sqrt{2}, r=i / \sqrt{2}$. This gives us

$$
\begin{gathered}
\left|\Psi_{\text {out }}\right\rangle=\frac{1}{\sqrt{2}}\left(t \hat{a}_{3}^{+}+r \hat{a}_{4}^{+}\right)^{2}|0\rangle=\frac{1}{\sqrt{2}}\left(t^{2} \hat{a}_{3}^{+} \hat{a}_{3}^{+}+r^{2} \hat{a}_{4}^{+} \hat{a}_{4}^{+}+2 t r \hat{a}_{3}^{+} \hat{a}_{4}^{+}\right)|0\rangle=\frac{1}{\sqrt{2}}\left(\frac{1}{2} \hat{a}_{3}^{+} \hat{a}_{3}^{+}-\frac{1}{2} \hat{a}_{4}^{+} \hat{a}_{4}^{+}+i \hat{a}_{3}^{+} \hat{a}_{4}^{+}\right)|0\rangle \\
\Rightarrow\left|\Psi_{\text {out }}\right\rangle=\frac{1}{2}|2\rangle_{3}|0\rangle_{4}-\frac{1}{2}|0\rangle_{3}|2\rangle_{4}+i \frac{1}{\sqrt{2}}|1\rangle_{3}|1\rangle_{4}
\end{gathered}
$$

Sanity check: $|1 / 2|^{2}+|1 / 2|^{2}+|1 / \sqrt{2}|^{2}=1 \Rightarrow\left|\Psi_{\text {out }}\right\rangle$ is normalized.
(c) If we do coincidence counting with photomultiplier detectors as in the Hong-Ou-Mandel experiment, we will find that in 1 out of 4 trials we get a detection in port 3 only, in 1 out of 4 trials we get a detection in port 4 only, and in 2 out of 4 trials we get a coincidence detection. However, we have learned something: We need to send (indistinguishable) photons into both ports if we want the kind of destructive interference that makes the $\mathrm{H}-\mathrm{O}-\mathrm{M}$ experiment interesting. Experiments where photons are sent into one port only tend to be rather boring.

Problem III

(a) From the note set "Introduction to Field Theory" we have

$$
\eta(x, t)=\sqrt{L} \sum_{k} q_{k}(t) u_{k}(x)
$$

where $q_{k}(t)$ is the generalized coordinate and the normal modes $u_{k}(x)$ are standing waves in the cavity. The standard Lagrangian has the form

$$
L=T-V=\sum_{k} \frac{1}{2} M \dot{q}_{k}^{2}-\frac{1}{2} M \omega_{k}^{2} q_{k}^{2}=\sum_{k} L_{k}
$$

where M and ω_{k} are the linear mass density and normal mode frequency. We can check that the Lagrange equation of motion for any given k reduces to a harmonic oscillator:

$$
\frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{q}_{k}}-\frac{\partial L}{\partial \dot{q}_{k}}=M \ddot{q}_{k}^{2}-M \omega_{k}^{2} q_{k}=0 \Rightarrow \ddot{q}_{k}^{2}-\omega_{k}^{2} q_{k}=0
$$

(b) The wave equation is

$$
\frac{\partial^{2} \eta}{\partial t^{2}}-v^{2} \frac{\partial \eta^{2}}{\partial x^{2}}=0 \quad \text { where } v^{2}=\frac{Y}{\mu}
$$

To simplify the notation, we substitute the field for an arbitrary mode k and divide out the factor of \sqrt{L}. This gives us

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-v^{2} \frac{\partial^{2}}{\partial x^{2}}\right) q_{k}(t) u_{k}(x)=0 \Rightarrow \ddot{q}_{k}(t) u_{k}(x)-v^{2} q(t) u_{k}^{\prime \prime}(x)=\ddot{q}(t)_{k} u_{k}(x)-q_{k}(t) v^{2} u_{k}^{\prime \prime}(x)=0
$$

Using the hint for $u^{\prime \prime}(x)$ we then get

$$
\ddot{q}_{k}(t)+\omega_{k}^{2} q_{k}(t)=0
$$

This is the exact same set of equations as in (a), which gives us confidence that we have found the correct Lagrangian.

