OPTI 544 Solution Set 6, Spring 2023
Problem 1

Note: It is non-trivial to obtain the wave equation from the Lagrangian expressed in
terms of the acoustic field 77(x), as this involves taking the derivative of a functional
(£) with respect to functions (77(x),7(x)). We avoid the need to learn about functional
derivatives by stating from the discrete Lagrangian,
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From the Lagrange equation of motion, T ow o 0, we get an equation for each i:
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In the limit @ — 0 the last two terms become
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Thus Eq. (i) above turns into a wave equation for the acoustic field,
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Problem 2

(a) Expressed in terms of the field n(x), the kinetic energy is
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(b) Working out the expression for the potential energy is a bit more involved.
First
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Using integration by part, J fx)Gx)dx = F(x)G(x)— J.F (x)g(x)dx , we can

rewrite the last part,
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Substituting, we get
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Next, we use
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where in the last step we have used Idx u,(x)u,(x)=0,,. Substituting in (2) we get
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Finally, we use
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where k* = % = %wf Substituting in (3), we then get
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This is the result given in the notes.
(c) The Lagrangian is
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Plugging into the Lagrange equation of motion gives us

This is the standard differential equation for a collection of harmonic
oscillators, one for each normal mode £.



