OPTI 544 Solution Set 6, Spring 2023

Problem 1

Note: It is non-trivial to obtain the wave equation from the Lagrangian expressed in terms of the acoustic field $\eta(x)$, as this involves taking the derivative of a functional (\mathcal{L}) with respect to functions $(\eta(x), \dot{\eta}(x))$. We avoid the need to learn about functional derivatives by stating from the discrete Lagrangian,

$$
\mathcal{L}=\frac{1}{2} \sum_{i} m \dot{x}_{i}^{2}-\kappa\left(x_{i+1}-x_{i}\right)^{2}=\frac{1}{2} \sum_{i} a\left[\frac{m}{a} \dot{x}_{i}^{2}-\kappa a\left(\frac{x_{i+1}-x_{i}}{a}\right)^{2}\right]
$$

From the Lagrange equation of motion, $\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}-\frac{\partial \mathcal{L}}{\partial x_{i}}=0$, we get an equation for each i :

$$
\begin{equation*}
\frac{m}{a} \ddot{x}_{i}-\frac{\kappa a}{a}\left(\frac{x_{i+1}-x_{i}}{a}\right)+\frac{\kappa a}{a}\left(\frac{x_{i+1}-x_{i}}{a}\right)=0 \tag{i}
\end{equation*}
$$

In the limit $a \rightarrow 0$ the last two terms become

$$
\lim _{a \rightarrow 0}\left\{-\frac{Y}{a}\left[\left(\frac{\partial \eta}{\partial x}\right)_{x_{i}}-\left(\frac{\partial \eta}{\partial x}\right)_{x_{i}-a}\right]\right\}=-Y \frac{\partial^{2} \eta}{\partial x^{2}}
$$

Also $\quad \lim _{a \rightarrow 0}\left\{\frac{m}{a} \ddot{x}_{i}\right\}=\mu \frac{\partial^{2} \eta}{\partial t^{2}}$
Thus Eq. (i) above turns into a wave equation for the acoustic field,

$$
\mu \frac{\partial^{2} \eta}{\partial t^{2}}-Y \frac{\partial^{2} \eta}{\partial x^{2}}=0
$$

Problem 2

(a) Expressed in terms of the field $\eta(x)$, the kinetic energy is

$$
\begin{aligned}
T & =\int d x \frac{1}{2} \mu\left(\frac{\eta(x, t)}{d t}\right)^{2}=\sum_{k, k^{\prime}} \frac{1}{2} \mu L \dot{q}_{k} \dot{q}_{k^{\prime}} \int d x u_{k}(x) u_{k^{\prime}}(x) \\
& =\sum_{k, k^{\prime}} \frac{1}{2} M \dot{q}_{k}^{2}
\end{aligned}
$$

(b) Working out the expression for the potential energy is a bit more involved. First

$$
\begin{equation*}
V=\int d x \frac{1}{2} Y\left(\frac{\eta(x, t)}{d x}\right)^{2}=\sum_{k, k^{\prime}} \frac{1}{2} L Y q_{k} q_{k^{\prime}} \int d x \frac{d}{d x} u_{k}(x) \frac{d}{d x} u_{k^{\prime}}(x) \tag{1}
\end{equation*}
$$

Using integration by part, $\int f(x) G(x) d x=F(x) G(x)-\int F(x) g(x) d x$, we can rewrite the last part,

$$
\int d x \frac{d}{d x} u_{k}(x) \frac{d}{d x} u_{k^{\prime}}(x)=u_{k}(x) \frac{d}{d x} u_{k^{\prime}}(x)-\int d x u_{k}(x) \frac{d^{2}}{d x^{2}} u_{k^{\prime}}(x)
$$

Substituting, we get

$$
\begin{equation*}
V=\sum_{k, k^{\prime}} \frac{1}{2} L Y q_{k} q_{k^{\prime}}\left[u_{k}(x) \frac{d}{d x} u_{k^{\prime}}(x)-\int d x u_{k}(x) \frac{d^{2}}{d x^{2}} u_{k^{\prime}}(x)\right] \tag{2}
\end{equation*}
$$

Next, we use

$$
\sum_{k, k^{\prime}} u_{k}(x) \frac{d}{d x} u_{k^{\prime}}(x)=\frac{1}{2} \frac{d}{d x} \sum_{k, k^{\prime}} u_{k}(x) u_{k^{\prime}}(x)=\frac{1}{2} \frac{d^{2}}{d x^{2}} \sum_{k, k^{\prime}} \int d x u_{k}(x) u_{k}(x)=\frac{1}{2} \frac{d^{2}}{d x^{2}} \sum_{k, k^{\prime}} \delta_{k, k^{\prime}}=0
$$

where in the last step we have used $\int d x u_{k}(x) u_{k^{\prime}}(x)=\delta_{k k^{\prime}}$. Substituting in (2) we get

$$
\begin{equation*}
V=\sum_{k, k^{k}} \frac{1}{2} L Y q_{k} q_{k^{\prime}}\left[\int d x\left(-\frac{d^{2}}{d x^{2}} u_{k}(x)\right) u_{k^{\prime}}(x)\right] \tag{3}
\end{equation*}
$$

Finally, we use

$$
\frac{d^{2}}{d x^{2}} u_{k}(x)=-k^{2} u_{k}(x) \Rightarrow \int d x \frac{d^{2}}{d x^{2}} u_{k}(x) u_{k^{\prime}}(x)=k^{2} \int d x u_{k}(x) u_{k^{\prime}}(x)=k^{2} \delta_{k k^{\prime}},
$$

where $k^{2}=\frac{\omega_{k}^{2}}{v^{2}}=\frac{\mu}{Y} \omega_{k}^{2}$. Substituting in (3), we then get

$$
\begin{equation*}
V=\sum_{k, k^{\prime}} \frac{1}{2} L Y q_{k} q_{k^{\prime}} k^{2} \delta_{k k^{\prime}}=\sum_{k} \frac{1}{2} L Y \frac{\mu}{Y} \omega_{k}^{2} q_{k}^{2}=\sum_{k} \frac{1}{2} M \omega^{2} q_{k}^{2} \tag{4}
\end{equation*}
$$

This is the result given in the notes.
(c) The Lagrangian is

$$
\mathcal{L}=T-V=\int d x \frac{1}{2} \mu\left(\frac{\eta(x, t)}{d t}\right)^{2}-\int d x \frac{1}{2} Y\left(\frac{\eta(x, t)}{d x}\right)^{2}=\sum_{k} \frac{1}{2} M \dot{q}_{k}^{2}-\sum_{k} \frac{1}{2} M \omega^{2} q_{k}^{2}
$$

Plugging into the Lagrange equation of motion gives us

$$
\frac{d}{d t} \frac{\partial \mathcal{L}_{k}}{\partial \dot{q}_{k}}-\frac{\partial \mathcal{L}_{k}}{\partial q_{k}}=M \ddot{q}_{k}-M \omega^{2} q_{k}^{2}=0 \Rightarrow \ddot{q}_{k}+\omega^{2} q_{k}^{2}=0
$$

This is the standard differential equation for a collection of harmonic oscillators, one for each normal mode k.

