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Problem 1 
 

Note:  It is non-trivial to obtain the wave equation from the Lagrangian expressed in 
terms of the acoustic field , as this involves taking the derivative of a functional 

 with respect to functions . We avoid the need to learn about functional 
derivatives by stating from the discrete Lagrangian, 
 

 

 

From the Lagrange equation of motion, , we get an equation for each i: 

 

   Eq. (i) 

 
In the limit  the last two terms become  
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 Thus Eq. (i) above turns into a wave equation for the acoustic field, 
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Problem 2 
 
(a) Expressed in terms of the field , the kinetic energy is  
 

  

 
(b) Working out the expression for the potential energy is a bit more involved. 

First 
 

        (1) 

 
Using integration by part, , we can 
rewrite the last part, 
 

  

 
Substituting, we get 
 

         (2) 

 
Next, we use 
 

  

 

where in the last step we have used .  Substituting in (2) we get 
 

            (3) 
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Finally, we use 
 

 , 

 

where .  Substituting in (3), we then get 
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This is the result given in the notes. 
 
(c) The Lagrangian is 
 

 

 
Plugging into the Lagrange equation of motion gives us 
 

 

 
 This is the standard differential equation for a collection of harmonic 

oscillators, one for each normal mode k. 
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