
1st Midterm 2024 - Problem Set 
 

I  
OPTI 544 has explored optical physics in the context of several approximations, descriptions, and 
pictures.  In the following, provide qualitative answers in your own words and keep math to an 
absolute minimum.  No equations! 
 
(a) Discuss the differences between fully classical, semiclassical and fully quantum descriptions 

of light, matter, and the interaction between the two. (8%) 
 
(b) Under what conditions is it appropriate to use a fully classical description? (8%) 
 
(c) OPTI 544 relies on the electric-dipole approximation from start to finish.  State it in your own 

words. (7%) 
 
(d) What is a Rotating Wave Approximation? When and how is it used? (9%) 
 
(e) A semiclassical atom-field interaction can often be cast in terms of a state vector and a 

Schrödinger equation.  What physical processes might make such a description insufficient?  
If so, what replaces state vectors and the Schrödinger equation in the description? (10%) 

 
(f) We have mentioned in class that pulses of light can be used as mirrors and beam splitters for 

atomic matter waves. This is now commonly used to build Mach Zender interferometers in 
which single-atom wave packets are split, separated by several centimeters inside the 
interferometer, and recombined at the output.  How can we reconcile this with part (c)? (8%) 

 
II  

Consider an ensemble of identical two-level atoms, prepared such that at time  we have 
 
    2/5 of the atoms in state  
 
    3/5 of the atoms are in state  
 
(a) Write out the density matrix  for the ensemble, in the basis of ground and 

excited states.  Then perform one of the tests to find out if it is a pure state or a statistical 
mixture. (12%) 

 
(b) Calculate the expectation value for the dipole moment operator . Based on the result, do 

you expect the ensemble to absorb or emit light? (12%) 
 
(c) Explain how you might have guessed the result in (b), given your understanding of the selection 

rules for electric dipole radiation. (13%) 
 
(d) When driven and undergoing Rabi oscillations the states  and  will 

evolve into coherent superpositions of the states  and . Given what we know about 
electric dipole radiation, do you expect the ensemble to radiate light at later times?  Explain 
your reasoning. (13%) 
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1st Midterm 2024 - Solution Set 
 

I 
(a) These are different levels of sophistication used to describe the interaction between light and 

matter. 
 
 Fully classical:  The EM field is described by the classical Maxwells Equations.  
    Atoms are modeled as classical electron oscillators 
 
 Semiclassical: The EM field is described by the classical Maxwells Equations.  

   Atoms are described quantum mechanically. 
 
 Fully quantum: The EM field is described by the quantum Maxwells Equations. 
    Atoms are described quantum mechanically.  
 
(b) A fully classical description is adequate do describe the interaction between the EM field and 
 quantum 2-level atoms if the atomic excitation is negligible. 
 
(c) The EDA assumes that the extent of the atom (quantum or classical) is far smaller than an 

optical wavelength. 
 
(d) When solving the Rabi problem, we first write out the Schrödinger equation as a set of 

coupled, linear differential equations for the ground and excited state probability amplitudes. 
These probability amplitudes oscillate as  or , where  is the frequency of the driving 
field.  The RWA begins with a change of variables such that each equation contains a set of 
slowly evolving probability amplitudes, and a second set that oscillates as  and therefore 
average out over the relevant timescales.  A similar transformation is often used in other 
situations where the equations of motion involves both slow and fast variables. 

  
(e) If the initial state is fully known and the time evolution is perfectly governed by a Schrödinger 

equation, then the physical state is perfectly known at all later times and can be described by 
a state vector.  However, if the initial state is not perfectly known or if the Schrödinger 
equation is noisy, then after some time we won't know the exact quantum state. In that 
situation we can describe the physical state as a probability distribution over quantum states, 
and we use a density operator/matrix to describe it. 

 
(f) The EDA is concerned with the internal degree of freedom for the bound nuclear-electronic 

system. If the electron-nuclear separation is much less than an optical wavelength then the 
EDA is valid.  The matter wave interferometry experiments are concerned with the center-of-
mass degree of freedom for the bound nuclear-electronic system. Thus, inside the 
interferometry the bound system is in a superposition state of wave packets traveling along 
macroscopically distinct paths, and the electron-nuclear separation is not affected. 

 
 
 
 
 
 

e+ iωt − iωt ω

e± i2ωt



II 
Consider an ensemble of identical two-level atoms, prepared such that at time  we have 
 
   2/5 of the atoms are in state  
 
   3/5 of the atoms are in state  
 
(a) We can find the density matrix associated with this ensemble by noting that 
 
       corresponds to the density operator    
 
     corresponds to the density operator    
 

 In matrix form we have           and   

 
 The density matrix for the ensemble is thus   
 

      

 

 Check trace:   

 

 Check purity:   

 

  and    

 
     Therefore the state must be a statistical mixture (mixed.) 
 
(b) The expectation value for the ensemble averaged dipole moment is  
 

    

 
(c)  Dipole radiation is associated with non-zero off-diagonal elements in the density matrix.  These 

are zero in the case above, so no radiation is emitted by the ensemble. 
 
 We could have guessed that easily, by noting that we are dealing with two entirely separate 

sets of atoms, 2/5th or which are in the ground state and 3/5ths in the excited state.  Neither set 
of atoms can radiate due to the parity selection rule that forbids radiation from atoms in parity 
eigenstates. 
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(d) Each sub-ensemble is incapable of radiating while the atoms are in parity eigenstates.  When 
the sub-ensembles undergoes Rabi oscillations, driven either by the same or different light 
fields, the initial states will evolve into superpositions of the states  and .  As we know, 
radiation is strongest when atoms are in an equal superposition of ground and excited states.  
Given the initial admixtures of ground and excited state in the two sub-ensembles, radiation 
from the more numerous atoms is guaranteed to dominate at least some of the time. 

 
 Postscript: A number of you have correctly pointed out that during Rabi oscillation the 

ensemble will radiate light due to spontaneous decay of atoms in the excited state. In the regime 
where the Rabi frequency is much larger than the spontaneous decay rate, , coherent 
radiation averaged over the Rabi cycle typically dominates over spontaneous emission. That 
was what was in my mind when I put together question II(d). 
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