Raman Coupling in 3-level Atoms

(5) Finally, the last term $\propto \frac{e^{-i\Delta t}}{\Delta}$ can be ignored because it averages to zero on the timescale on which δ_1 , δ_3 evolve.

Note:

The ground state amplitudes evolve slowly Because χ_1/Δ , $\chi_2/\Delta \ll 1$, while the excited state amplitude evolves fast and adiabatically follows the instantaneous values of \mathcal{L}_1 , \mathcal{L}_2

Plug the solution for $\ell_1(\ell)$ into the eqs. for ℓ_1, ℓ_2

$$\dot{b}_{1}(t) = i \frac{\chi_{1}^{2}}{4\Delta} b_{1}(t) + i \frac{\chi_{1} \chi_{2}}{4\Delta} b_{2}(t)$$

$$\dot{b}_{3}(t) = -i \left(\delta - \frac{\chi_{2}^{2}}{4\Delta}\right) b_{3}(t) + i \frac{\chi_{1} \chi_{2}}{4\Delta} b_{1}(t)$$

We simplify by making a final change of variables

$$C_1(t) = b_1(t) e^{-i\frac{\chi_1^2}{4\Delta}t}, \quad C_3(t) = b_3(t) e^{-i\frac{\chi_1^2}{4\Delta}t}$$

$$\dot{C}_{1}(t) = i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{3}(t)$$
These are two-level equations!
$$\dot{C}_{3}(t) = -i \left(\delta + \frac{\chi_{1}^{2} - \chi_{2}^{2}}{4\Delta}\right) C_{3}(t) + i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{1}(t)$$

Physical Discussion: We have an effective 2-level atom with effective Rabi Frequency and detuning.

$$\chi_{\text{eff}} = \frac{\chi_1 \chi_2}{2\Delta}$$
, $\delta_{\text{eff}} = \delta + \frac{\chi_1^2 - \chi_2^2}{4\Delta}$

Note that $\chi_{eff} \sim \chi_{\infty}^2$ while the excited state population $\chi_{\infty}^2 \sim \chi_{\infty}^2$. This means that for large $\chi_{\infty}^2 \Delta$ we can have large χ_{eff}^2 and no opportunity for spontaneous decay.

Coherent Rabi oscillations and long lived superposition states

Raman Coupling in 3-level Atoms

We simplify by making a final change of variables

$$C_1(t) = b_1(t) e^{-i \frac{\chi_1^2}{4\Delta}t}, \quad C_3(t) = b_3(t) e^{-i \frac{\chi_1^2}{4\Delta}t}$$

$$\dot{C}_{1}(t) = i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{3}(t)$$
These are two-level equations!
$$\dot{C}_{3}(t) = -i \left(\delta + \frac{\chi_{1}^{2} - \chi_{2}^{2}}{4\Delta}\right) C_{3}(t) + i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{1}(t)$$

<u>Physical Discussion</u>: We have an effective 2-level atom with effective Rabi Frequency and detuning.

$$\chi_{eff} = \frac{\chi_1 \chi_2}{2\Delta}$$
, $\delta_{eff} = \delta + \frac{\chi_1^2 - \chi_2^2}{4\Delta}$

Note that $\chi_{eff} \sim \chi_{\infty}^2$ while the excited state population $\chi_{\infty}^2 \sim \chi_{\infty}^2$. This means that for large $\chi_{\infty}^2 \Delta$ we can have large χ_{eff}^2 and no opportunity for spontaneous decay.

Coherent Rabi oscillations and long lived superposition states

Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom

12>
$$\frac{12+}{h\omega_0}$$
 $\frac{hx^2}{4\Delta}$
 $\frac{h\omega_0}{h\omega_0} + \frac{kx^2}{2\Delta}$
11> $\frac{14-}{4\Delta}$ $\frac{14-}{4\Delta}$

3-level system \Rightarrow ground state shifts $\frac{\chi_1^2}{4\Delta}$, $\frac{\chi_2^2}{4\Delta}$

 \Rightarrow Differential ground state shift $\frac{\chi_1^2 - \chi_2^2}{4\Delta}$

Final note: The atomic dipole () will have components that match the frequency and polarization of both driving fields, with amplitudes that depend on both fields.

Non-Linear wave mixing,
Breakdown of superposition principle

Raman Coupling in 3-level Atoms

Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom

12>
$$\frac{12+}{h\omega_0}$$
 $E_{+} = h\omega_0 + \frac{hx^2}{4\Delta}$

11> $\frac{h\omega_0}{h\omega_0} + \frac{hx^2}{2\Delta}$

11> $\frac{14-}{h\omega_0}$ $E_{-} = -\frac{hx^2}{4\Delta}$

3-level system \Rightarrow ground state shifts $\frac{\chi_1^2}{4\Delta}$, $\frac{\chi_2^2}{4\Delta}$

Differential ground state shift $\frac{\chi_1^2 - \chi_2^2}{4 \Lambda}$

Final note: The atomic dipole () will have components that match the frequency and polarization of both driving fields, with amplitudes that depend on both fields.

Non-Linear wave mixing,
Breakdown of superposition principle

Example: Velocity dependent Raman Coupling

$$F'=1$$

$$F'=1$$

$$M=\frac{\delta}{1}$$

$$\frac{\delta}{\delta}$$

$$\frac{\delta}{\delta}$$

$$\frac{\delta}{\delta}$$

$$\frac{\delta}{\delta}$$

$$\frac{\delta}{\delta}$$

$$\frac{\delta}{\delta}$$

field freqs. in co-moving frame

velocity dependent Raman detuning

$$\omega_{+} = \omega + k \omega$$

$$\omega_{-} = \omega - k \omega$$

Applications:

- Doppler velocimetry
- Raman Cooling by velocity selective momentum transfer
- What if we apply a $\pi/2$ Raman pulse?
- Atom Interferometry

Mental Warmup: What is a probability?

(1) Example: Coin toss

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

This is the Bayesian Interpretation of Probability

(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)

(4) Mixed Quantum & Classical Case

- We can easily envision a hybrid Quincunx that is part classical, part quantum.
- Physics needs an efficient description these kinds of intermediate situations

(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)

(4) Mixed Quantum & Classical Case

- We can easily envision a hybrid Quincunx that is part classical, part quantum.
- Physics needs an efficient description these kinds of intermediate situations

(5) Example: Quantum Trajectories

 Ensemble of 2-level atoms undergoing Rabi oscillation with random decays

Definition: A system for which we know only the probabilities n_k of finding the system in state n_k is said to be in a statistical mixture of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

(5) Example: Quantum Trajectories

 Ensemble of 2-level atoms undergoing Rabi oscillation with random decays

Definition: A system for which we know only the probabilities $\{1, 4, 6\}$ of finding the system in state $\{1, 4, 6\}$ is said to be in a statistical mixture of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

<u>Definition</u>: Density Operator for pure states

Definition: Density Matrix

$$|4(t)\rangle = \sum_{n} C_{n}(t)|u_{n}\rangle \Rightarrow$$

 $Q_{pn}(t) = \langle u_{p}|Q(t)|u_{n}\rangle = C_{p}(t)C_{n}^{*}(t)$

<u>Definition</u>: Density Operator for mixed states

$$g(t) = \sum_{k} n_k g_k(t), g_k = [4_k(t) \times 4_k(t)]$$

Note: A pure state is just a mixed state for which one 15 and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

<u>Definition</u>: Density Operator for pure states

<u>Definition</u>: Density Matrix

$$|4(t)\rangle = \sum_{n} C_{n}(t)|u_{n}\rangle \Rightarrow$$

 $Q_{pn}(t) = \langle u_{p}|Q(t)|u_{n}\rangle = C_{p}(t)C_{n}^{*}(t)$

<u>Definition</u>: Density Operator for mixed states

$$g(t) = \sum_{k} n_k g_k(t), g_k = [4_k(t) \times 4_k(t)]$$

Note: A pure state is just a mixed state for which one n_{\sharp} : 1 and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

Let \mathcal{A} be an observable w/eigenvalues \mathcal{A}_n Let \mathcal{A} be the projector on the eigen-subspace of \mathcal{A}_n For a <u>pure</u> state, $\mathcal{Q}(\ell) = |\mathcal{A}(\ell) \times \mathcal{A}(\ell)|$, we have

(*) Tr
$$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*)
$$\langle A \rangle = \langle \chi(t) | A | 2 \chi(t) \rangle = \sum_{p} \langle \chi(t) | A | 1 \chi_{p} \rangle = \sum_{p} \langle \chi_{p} | \chi(t) \rangle \langle \chi(t) | A | 1 \chi_{p} \rangle = \sum_{p} \langle \chi_{p} | \chi(t) \rangle \langle \chi(t) | A | 1 \chi_{p} \rangle = \sum_{p} \langle \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} \rangle = \sum_{p} \langle \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} \rangle$$

$$= \sum_{p} \langle \chi_{p} | \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} \rangle \langle \chi_{p} | \chi_{p} | \chi_{p} \rangle \langle \chi_{p} |$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \langle \psi(t) | \mathcal{P}_n | \psi(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$

(*)
$$g(t) = [4(t) \times 4(t)] + [4(t) \times 4(t)]$$

 $= \frac{1}{18} [4(t) \times 4(t)] - \frac{1}{18} [4(t) \times 4(t)] [4(t$

Let \triangle be an observable w/eigenvalues \bigcirc Let \mathbb{Q} be the projector on the eigen-subspace of \mathbb{Q}_n For a <u>pure</u> state, $Q(\ell) = | \Psi(\ell) \times \Psi(\ell) |$, we have

(*)
$$(rg(t) = \sum_{n} g_{nn}(t) = \sum_{n} |c_{n}|^{2} = 1$$

(*) $(A) = \langle \gamma(t) | A | \gamma(t) \rangle = \sum_{n} \langle \gamma(t) | A | \mu_{n} \times \mu_{n} | \gamma(t) \rangle$

(*)
$$\text{Tr }g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*) $\langle A \rangle = \langle \gamma(t) | A | \gamma(t) \rangle = \sum_{p} \langle \gamma(t) | A | \mu_{p} \times \mu_{p} | \gamma(t) \rangle$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) | A | \mu_{p} \rangle$$

$$= \text{Tr }[g(t) | A] \quad (|\mu_{p}\rangle \text{ basis in } \mathcal{H})$$

(*) Let \mathbb{Q} be the projector on eigensubspace of \mathfrak{a}_{n}

$$P(a_n) = \langle \psi(t)|P_n|\psi(t)\rangle = Tr[g(t)P_n]$$

(*)
$$g(t) = [4(t) \times 4(t)] + [4(t) \times 4(t)]$$

 $= \frac{1}{12} [4(t) \times 4(t)] - \frac{1}{12} [4(t) \times 4(t)] H$
 $= \frac{1}{12} [4,8]$

Let A be an observable w/eigenvalues A_n Let A be the projector on the eigen-subspace of A_n

For a <u>pure</u> state, $g(t) = |\psi(t) \times \psi(t)|$, we have

(*) Tr
$$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*)
$$\langle A \rangle = \langle \chi(t) | A | 2 \chi(t) \rangle = \sum_{p} \langle \chi(t) | A | 1 \mu_{p} \times \mu_{p} | 2 \chi(t) \rangle$$

$$= \sum_{p} \langle \mu_{p} | \chi(t) \times \chi(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \chi(t) | A | 1 \mu_{p} \rangle$$

$$= Tr[2 \chi(t) A] \quad (| \mu_{p} \rangle \text{ basis in } \mathcal{H})$$

(*) Let \mathcal{R} be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \langle \psi(t) | P_n | \psi(t) \rangle = \text{Tr}[\mathcal{Q}(t) P_n]$

(*)
$$g(t) = |x(t) \times x(t)| + |x(t) \times x(t)|$$

$$= \frac{1}{12} |x(t) \times x(t)| - \frac{1}{12} |x(t) \times x(t)| + |x(t) \times x(t)|$$

$$= \frac{1}{12} |x(t) \times x(t)| - \frac{1}{12} |x(t) \times x(t)| + |x(t) \times x(t)|$$

$$= \frac{1}{12} |x(t) \times x(t)| + |x(t) \times x(t)|$$