Raman Coupling in 3-level Atoms
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(5) Finally, the last term « %— can be ignored

because it averages to zero on the timescale
on which ((91 , 4, evolve.,

Note:

The ground state amplitudes evolve slowly
Because X,/A,X,/A 4«1, while the excited
state amplitude evolves fast and adiabatically
follows the instantaneous values of 261 Ay
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We simplify by making a final change of variables
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Physical Discussion: We have an effective 2-level
atom with effective Rabi Frequency and detuning.
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Note that ) ~ X/ while the excited state population
R~ X/Ai This means that for large %, /A we can have
large ). and no opportunity for spontaneous decay.
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Coherent Rabi oscillations and long lived
superposition states
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atom with effective Rabi Frequency and detuning.
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Coherent Rabi oscillations and long lived
superposition states

Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom
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Final note: The atomic dipole (/ﬁ} will have

components that match the frequency and
polarization of both driving fields, with
amplitudes that depend on both fields.

o

Non-Linear wave mixing,
Breakdown of superposition principle
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Note also: The effective Raman detuning is shifted.
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Final note: The atomic dipole (x@) will have

components that match the frequency and
polarization of both driving fields, with
amplitudes that depend on both fields.
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Non-Linear wave mixing,
Breakdown of superposition principle
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Example: Velocity dependent Raman Coupling
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field fregs. in velocity dependent
co-moving frame Raman detuning
W, = W+ fear
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Applications:

— Doppler velocimetry
— Raman Cooling by velocity selective
momentum transfer

— What if we apply a 7/5. Raman pulse?
— Atom Interferometry
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Mental Warmup: What is a probability?

(1) Example: Coin toss

— We can describe physical states by
probability distributions

— Probabilities are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

— We can describe physical states by
probability distributions

— Probabilities are assigned based on

prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

This is the Bayesian
Interpretation of Probability

(3) Example: Quantum Quincunx

— We can describe physical states by
guantum wavefunctions (state vectors)

— Quantum states are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, quantum states are
subjective ( states of knowledge)

(4) Mixed Quantum & Classical Case

— We can easily envision a hybrid Quincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations
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(3) Example: Quantum Quincunx (5) Example: Quantum Trajectories

— Ensemble of 2-level atoms undergoing

— We can describe physical states by Rabi oscillation with random decays

guantum wavefunctions (state vectors)

— Quantum states are assigned based on P Atom #1 R Atom #2 P Atom #3 ...
prior knowledge, updated when N A A
additional info becomes available
— As such, quantum states are /EA/J § / \ f% / /gf%/\
subjective ( states of knowledge) > — = - >
(4) Mixed Quantum & Classical Case {ig_ Average

— We can easily envision a hybrid Quincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations

B

Definition: A system for which we know only
the probabilities 41y, of finding the system in

state (1, is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state
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(5) Example: Quantum Trajectories Definition: Density Operator for pure states
— Ensemble of 2-level atoms undergoing =
Rabi oscillation with random decays Q“) ) X UCE|

h  Atom#1 A Atom#2 R Atom #3 ...
) ] f Definition: Density Matrix
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Definition: Density Operator for mixed states

QW) =2 Ay Qut), G =1, (O Ky )|
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Note: A pure state is just a mixed state for
which one 4l =1 and the rest are zero.

Definition: A system for which we know only

the probabilities 41y, of finding the system in

state (1, ) is said to be in a statistical mixture ] ] ]
of states. Shorthand: mixed state. The terms Density Operator and Density Matrix

are used interchangeably

Shorthand for non-mixed state: pure state




Density Matrix Description of 2-Level Atoms

Definition: Density Operator for pure states

QW) = 14 ) X U(E)|

Definition: Density Matrix
Iy )y = z;_c,,u)wp o
Cpn [4) =Ml OB [ M, = Col) G H)

Let A be an observable w/eigenvalues O,

Let Q, be the projector on the eigen-subspace of O,

For a pure state, Q(£) = | {+) X y(L)| , we have

Definition: Density Operator for mixed states

Q) =% Ay Qule), € = (1, () Kyg )|
%

Note: A pure state is just a mixed state for
which one 4lp =1 and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably
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Let A be an observable w/eigenvalues O,

Let Q, be the projector on the eigen-subspace of O,

For a pure state, Q(£) = | {+) X y(L)| , we have
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Let A be an observable w/eigenvalues 0,

Let 1:3. be the projector on the eigen-subspace of O,

For a pure state, Q(£) = | {+) X 4(£)| , we have
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