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More about the Photon Scattering Cross Section

Collision I l I Collision
free T> 12 g 2 /3 <= broadened

This gives us

Wy B 2
D)= =
s(0)=4 ey Wl

Let 3 =A2|/2 » G=0=0 (collision free) =»

q(0) = %JL" qT" 1 *
ﬁCS A‘,_, ’E\-e,_,)‘ Ay

L
Here we simply . I TR
L] 1[ -—
note the result 3172,'9(&3

Substituting in % we get

200 3TEBc® p 302
&ce, w3 VU oamw

o) =4

! 1

Collision free, Collision broadened
polarized light or un-polarized light

— Remarkably simple result -
easy to remember

Why ?



Emission and Absorption — Population Rate Equations
Rate Eq. Model of Absorption

The loss over distance dl is A = cdN(en-0,)

If d>«¢8at— then @ = and Q=0 and we get
df =-Ng(a)bd2 ® %(b =-NTW®) =-ad

Absorption:
//// 777, <0 .2.-.;_0
777 //{//. ///{/////{ B Cb@a') e ( ) ¢["9:o>
Yl r /) _a(2-2,)
{ — T(3)=¢e *TRo)
2, 2

Soiid: IV~ [0 /cm~ ®» totaiiy opaque @ resonance

Gas: N~[0D°/Cwm> ®» transparent @ resonance
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Emission and Absorption — Population Rate Equations

Rate Eq. Model of Absorption

The loss over distance d¥ is A = cON(ey-©,)

If d) <<q5§0¢_ then Q = 4 and Q= O and we get
A =-Ng(a)ddz B %d} =-NTW®) =-ad

Absorption:
/1)) -0 %—.')_o
777 /f{//‘ ///{/////{ B Cbi‘H =e ( ) Cw%o)
Yl e/ /)7 _a(2-2,)
{ N T(3)=e *TR)
2, 2

Solid: N« 10" /rm> B totallv obpaaue @ resonance

Gas: N~ IV7/Cwm” B transparent @ resonance

High flux ® photon scattering per atom saturates

1 55> Gy then @y () =1yl = N Bt gl
~——
dea) = §lty)- Nhugz-)

At very high flux the loss is relatively insignificant

P, Ble,)» v p-2 )

2

— This is referred to as bleaching or hole burning




Emission and Absorption — Population Rate Equations

Blackbody Radiation

This is a standard problem in Optical Physics, which
we review only briefly in OPTI 544. See almost any
textbook for details, including Milloni & Eberly.

®» we can anproximate S(V) = O\, ~V)

B Ry =l I¥WV,) =15QLY,, )

\ 9 ) €& Kinctein R coefficient

' A B S TR A Wy a

SLEP (4). Use prior result 1or -4, 1o TINA g/ 15

g(‘v\ =

stho3/c3

Energy Density
of the Blackbody
Radiation field

Step (5): We can extend this to find the

% Total electromagnetic energy density

% Total radiated intensity from a black body



Emission and Absorption — Population Rate Equations

Step (3): 2-level atom in thermal equilibrium
with Blackbody Radiation field

Cay . e— ap‘_l/ﬁg'r Am /R
S ®» 190, )= =
[Au'f' 'Q.L;\Q?‘l: Ry S

(Detailed Balance)

Step (4): Use prior result for A,, to find A, /R,
which is independent of 1(1?;

QC V) SThv/c” E? fl:gyBll)e nkslriwd
= of the Blackbody
e fo/RgT_ g Radiation field

Step (5): We can extend this to find the

% Total electromagnetic energy density

% Total radiated intensity from a black body

Step (6): Relative importance of spontaneous
and stimulated emission

A‘)J A'Ll —Qﬁ) //%Brl:

We have o ':E?h)) = e 1 %1

for T geveral x 1000

Take the surface of theSun, T =5800K

A
— V140 @ Xax = SOOUM
'Qﬂ]_

End 02-22-2024
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We return to the Density Matrix
Equations of Motion for a 2-Level atom

én = '_fT € +A2!?9.2_';!:(X@H._X*Q‘Z()
éu’ ~T9Qyy~ Ay, Qg + 3';_‘ (X?n "X*‘gu>
] . RV 2 8

S 2('A"[3') St %"(gﬁ"g“ = Q"

P=~+ P+L+AJ,) X = /d@u'éeo/&

Note: In our previous iteration we studied the
Rate Equation approximation, which is useful
when we are looking for steady state solutions

Here our goal is different — we seek to recast
the Density Matrix formalism in a way that is
better suited to understanding and modeling
coherent evolution and transient phenomena.
This will also be useful when we study wave
and light pulse propagation.

Vector Model of the 2-Level Atom

Optical Bloch Equations (OBE’s)

let N=0=0 ® Qy+Q,=1,8,"= 9:.:

® 3independent,
real-valued variables

Define A= Gy +8),
Bloch w=i(Q,—8y)
Variables
W= 0y ~&,,

Let X = l‘)cle,""P substitute in equations for @,
leaving out relaxation terms Ay_,, g 2, B

-
Optical Bloch Equations

M= =AU - [XISin Paw
O =Au+ X [ConPw
w = -1X|(Cos o -SinPu)




Vector Model of the 2-Level Atom

Optical Bloch Equations (OBE’s)

let [=0,=0 ® 914""9;1"1,9:_:9:

®» 3independent,
real-valued variables

Define M =Gy +8,
Bloch v=i(Qy—8y)

Variables
MW=y ~&,,

Let X = lx]e,""P , substitute in equations for @,
leaving out relaxation terms Az,,l'; I (3

— -

Optical Bloch Equations

M= =AU - [XISin P
O =Au+ X [CosPw
w =~ X (Cos@ v -CinPur)

Define:

> T T
=md+UA+awh
-[X] COQQ?"[K[SW’¢§+ Al

— -

= S Equivalent
S=QxS J to OBE’s!
AN

Torque Bloch Vector
length conserved

A
Note: O%(S") = 92.3 = 25-(@'x§) =0

n

L vy

From the definition of the Bloch Variables we get
AW At
= b .
M~ 14+ W

and
Trgh=L [14at+0trart] = s{temt €1

» | Isi*4 4




Vector Model of the 2-Level Atom

=i +aokh
Q=-1XI CosQ'?-lf!siwcy's+ Al

B
I S Equivalent
S=QxS J to OBE’s !

2 N

Torque  Bloch Vector

Define:

b

n

length conserved

v
Note: O%C(S") = 92-3 = 25-(§x§) =0

From the definition of the Bloch Variables we get
( A=  f 4
M~ 4+ 4>

_1
@3

and
Trgh=L (14l +0Lrart] = 7'_[4«rlsl"]é 1

» | Is*41

Clearly, [Si[=1 ®» '77‘9’— =41 W pure state

Statesw/ [EI<1 ®» Tro*< 1 ®» mixed state

- _ - - 1/ O
§1=0 ® Ter=Ty ® f (oLz/9.>

maximally mixed

Note: The above suggests a physical state can
be represented by a vector § , Whose tip lies on
the surface of (pure) or inside (mixed) a sphere of
unit radius, and whose length is conserved under
Schrédinger evolution. This is the Bloch Sphere.

B4y =12
a-"—‘[XlQOS(??—Ing?n(P;-f-AE
%> =& ([15-1]95)

S 51
/
=

C

i

N y>=M1>




Vector Model of the 2-Level Atom

ISt=1 W Tro*=1 ® pure state
Statesw/ [ZI<1 B Tro*<4 ®» mixed state

Clearly,

o t/y

[Sl=0 Q T‘?Q‘L:Vl » g:(ﬂl. 0>
)r

maximally mixed

Note: The above suggests a physical state can
be represented by a vector Z , whose tip lies on
the surface of (pure) or inside (mixed) a sphere of
unit radius, and whose length is conserved under
Schrédinger evolution. This is the Bloch Sphere.

Z,/ 47 =125

:\,—';l(h)-i[p\

AT

,_I

N y>=M1>

Q =—[Xlcos@ ™ 1XI5in@; + AT

(%) Do not confuse 2 with the state vector |4 .
|45 lives in a complex vector space. Also, do
not confuse & with a vector in real, physical
space. Z lives in an abstract, real-valued
vector space.

(*) Only if the 2- level system is a physical spin-1/2
particle does g correspond to an angular
momentum vector that lives in physical space.
In general, & is what we call a pseudo-spin,
not an actual physical spin.

Physical Interpretation of the Bloch Variables

We have (> =T (g%i) = gm/@.* %, T

gl (*“ ,v_)e 1wt ( variables
W driving
E=Refge,e ™] L

It follows that

—IW‘b =

A

= uRe [} W]+ Tml Ry V¢]

(ﬁ)v&(JMHr)&'“*me 3 (u-iw)e




Vector Model of the 2-Level Atom

(%) Do not confuse 2 with the state vector |4 .
|45 lives in a complex vector space. Also, do
not confuse £ with a vector in real, physical
space. Z lives in an abstract, real-valued

vector space.

(%) Only if the 2-level system is a physical spin-1/2
particle does g correspond to an angular
momentum vector that lives in physical space.
In general, & is what we call a pseudo-spin,
not an actual physical spin.

Physical Interpretation of the Bloch Variables
We have (> =Tr (Q%‘) = Q. fu* S, L

-1t ( variables

- : it
where  G,,= - (n+iv)e fast
Gy =y -ve

) - YR YR drivin
E=Re(Zee” ] “faig®

It follows that

[NE = Wt =

Gy =3 (i) e, 3 i) VR,

= #Re [ Fi e W] + 0 Tl iy Ve

Thus
AL is the component of (/f‘\) in-phase w/ E
A is the component of (f\‘) in-quadrature w/@

Lastly, 1) = @4y ~Q,, is the population inversion.

Solution of the OBE’s
-

Q=-~I%X[4

p=0

Let /A =0 and X real and positive &) {

St +aok
B =-1X1cosq7 - [X[sing} + AL

10



Vector Model of the 2-Level Atom

(%) Do not confuse 2 with the state vector |4 .
|45 lives in a complex vector space. Also, do
not confuse £ with a vector in real, physical
space. Z lives in an abstract, real-valued
vector space.

(%) Only if the 2-level system is a physical spin-1/2
particle does g correspond to an angular
momentum vector that lives in physical space.
In general, & is what we call a pseudo-spin,
not an actual physical spin.

Physical Interpretation of the Bloch Variables
We have (> =Tr (g%ﬂ) = Q. fu* S, L

where g,,ﬁ(mw)e)“"‘} fast

g =1(M-iv)e’;""* variables
A L

- - =t drivin
E=Re(Ee,e ] “foig”

It follows that

[NE = Wt =

Gy =3 (i) e, 3 i) VR,

= #Re [ Fi e W] + 0 Tl iy Ve

Thus
AL is the component of (/f‘\) in-phase w/ E
A is the component of (f\‘) in-quadrature w/f_‘—:

Lastly, 1) = @4y ~Q,, is the population inversion.

Solution of the OBE’s

-_> -
Let AA=0 and X real and positive & Q=-Ixte
- =0
simplified . o - I choose global
equations ° M =0 phase so u(0) =0
v = Aw
W ==Ky

M=~ AU - [XISin Paw
O =Aum+[X|CosPw
w = -1X|(Cos o -SinPur)
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Vector Model of the 2-Level Atom

(%) Do not confuse 2 with the state vector |4 .
|45 lives in a complex vector space. Also, do
not confuse £ with a vector in real, physical
space. Z lives in an abstract, real-valued
vector space.

(%) Only if the 2-level system is a physical spin-1/2
particle does g correspond to an angular
momentum vector that lives in physical space.
In general, & is what we call a pseudo-spin,
not an actual physical spin.

Physical Interpretation of the Bloch Variables
We have (> =Tr (Q%‘) = Q. fu* S, L

where g,,=%(m+w)e)“*} fast

g =1(M-iv)e’;""* variables
A L

- - =t drivin
E=Re(Ee,e ] “foig”

It follows that

[NE = Wt =

Gy =3 (i) e, 3 i) VR,

= #Re [ Fi e W] + 0 Tl iy Ve

Thus
AL is the component of (/f‘\) in-phase w/ E
A is the component of (f\‘) in-quadrature w/@

Lastly, 1) = @4y ~Q,, is the population inversion.
Solution of the OBE’s

Let /A =0 and X real and positive &)

- >
{&=-IX[¢
T

p=0

simplified . o - choose global
equations ° M =0 phase so u(0) =0
v = Ywr
W =Ry
Solution M =0
Rabi Vv=-5nH ’ 9:?(%
Oscillations 4= ~(080
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Vector Model of the 2-Level Atom

Thus

AL is the component of (ﬁ) in-phase w/ E
A is the component of (%“\) in-quadrature W/E

Lastly, 1) = Q44 ~Q,, is the population inversion.
Solution of the OBE’s

-_ >
Let A=0 and X real and positive &) {& ==Xl

9=0

T
Simplified . - ¢ ! choose global
equations ° M =0 phase so u(0) =0
v = Awr
W ==X
Solution M =0
Rabi Vv=-5nbH ’ 9:?(’13—
Oscillations 4= ~(050

What if X = X(+)? We now have solutions

M =0

Pulse Area

V<=-Cing, O Theorem!

rX&')o({'
W= ~0s6 0

This is a very important result = We can deal

with pulses!

[

X () 1

I O area under curve /\
y
2
gFiurw.l.
2L

Note:  X(¢) =, EE(4)/4=m E%)/&

T complex amplitude

Cannot remain real if the complex phase
of £[L) is changing with time

13



Vector Model of the 2-Level Atom

What if X = X(+)? We now have solutions

M =0
: Pulse Area
V<=-Sing, O+ rﬂf')/ﬁ' Theorem!
W =~(0s6 °
This is a very important result = vv\xth::S:::
[
X () 1
I O area under curve
y )
7 > € .
gFi-rw.L -
Sinitial
M
= 4
Note:  X(L)=4, EEW)/E=m E%)/:%
T complex amplitude

Cannot remain real if the complex phase
of £[L) is changing with time

Note: The RWA is valid only in the

Some examples of O-pulses:

Different phase E) different axis of rotation

-

The Pulse Area Theorem is onI\L;IaIid if the
direction of the torque vector (Q is constant.

}Q_?«w

Slowly Varying Envelope Approx. ot

This may not hold for modern Ultrafast Lasers !

(quantum gates)

O=T ®=T &<
® . ®
o S‘F 'y
sl A\ ﬁﬁ«
N J
Q? §r §: g{

14



Vector Model of the 2-Level Atom

Different phase E) different axis of rotation

-

The Pulse Area Theorem is onlv_;lalid if the
direction of the torque vector (O is constant.

Note: The RWA is valid only in the } 3

— LW
Slowly Varying Envelope Approx. ot

This may not hold for modern Ultrafast Lasers !

Some examples of O-pulses: (quantum gates)

&= =T O I
¢ . n
A S{ A
% LA e
U J
§, §{ g, '.{

Ramsey Method of Separated Oscillatory Fields
(The Ramsey “trick”, 1989 Nobel in Physics)

S

. e
Single pulse measurement

of Wy, in Atomic Clock:

Xte)
Tr-pulse

X7+ AT

e

T

Idea is to measure population of [ as function
of A =Wy~ (J which is maximized for (J = (v, .

The frequency resolution is St < 1/, so very
long pulses are required. The atom is perturbed
by interaction with the light during the entire
interrogation and problems can occur due to
phase or amplitude noise on the light field. This is
not good since the clock is supposed to link to
the transition frequency of an unperturbed atom.

15



Vector Model of the 2-Level Atom

Ramsey Method of Separated Oscillatory Fields
(The Ramsey “trick”, 1989 Nobel in Physics)

-

. e
Single pulse measurement

of Wy, in Atomic Clock:

Xte)

IXIT A
Tr-pulse

&}

T

Idea is to measure population of [ as function
of A =Wy~ (J which is maximized for (J=(v,,.

The frequency resolution is At < 1/T , So very
long pulses are required. The atom is perturbed
by interaction with the light during the entire
interrogation and problems can occur due to
phase or amplitude noise on the light field. This is
not good since the clock is supposed to link to
the transition frequency of an unperturbed atom.

jal]

oY

Ramsey’s two-pulse strategy:

X(4) Sequence of 2 short,
Tly T intense T/ pulses,
separated by a long
«T « OF free evolution period,
+  Sothat T8¢

During pulses [X| > A &. = [XIZ-I—AZ ~ KIS

Case A =0, path on the Bloch sphere

o)

Case A +0 , path on the Bloch sphere

16



Vector Model of the 2-Level Atom

Ramsey’s two-pulse strategy:

X Sequence of 2 short,

Tl To intense T/y pulses,
separated by a long
«T . 5-{~ free evolution period,

+  Sothat T8¢

During pulses [X| > A © Z§ = [XFZ+Az ~ KT

Case A =0, path on the Bloch sphere

\ \ \

O
o)

Case A +0 , path on the Bloch sphere

5,
v

O

Ramsey’s two-pulse strategy:

X Sequence of 2 short,

Ty T intense T/ pulses,
separated by a long
«T < Ot free evolution period,

+  Sothat T8¢

During pulses [X|A ® @ = [XIT+ Ak~ 1%
Again, if we measure the population of 1) as a
function of A = Wy~ (J, a maximum is found when
(W= Wy,. However, the resolution is now oW < 1/‘T
where T is the time between pulses. This is an
enormous advantage for atomic clocks and other
forms of precision metrology.

17



Vector Model of the 2-Level Atom

Ramsey’s two-pulse strategy:

X Sequence of 2 short,
Ty Tl intense T pulses,
separated by a long
TSt free evolution period,

+  Sothat T8¢

During pulses [X| A B @ = IXIC+ak~ 1%
Again, if we measure the population of 11 as a
function of A = Wy~ (J, a maximum is found when
(W= . However, the resolution is now OW « Y
where T is the time between pulses. This is an
enormous advantage for atomic clocks and other

forms of precision metrology.

https://www.nobelprize.org/prizes/physics/1989/summary/

https://www.nobelprize.org/uploads/2018/06/ramsey-
lecture.pdf
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