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Density Matrix Description of 2-Level Atoms

Next: Non-Hamiltonian evolution

Types of events

(i)  Elastic collisions: No change in energy

(ii)  Inelastic collisions: Atom loss

(iii) Spontaneous decay: Transition [3) <> [¢>

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,

each other free evol. of Q,, changed
EN oy . — 1
T B
Wy Wytd Wy
VIR R I
iy "~ 1

Paradigm for perturbations that do
not lead to net change in energy

Evolution of coherence (fast variables)
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=> Q)= g, 0\ e [ cter doaee)

We need the ensemble average of @ (+)

Assumptions:

—  From atom to atom 2w () isa
Gaussian Random Variable

— Averaged over the ensemble 45&1(;5'}?&=0

— Collisions have no memory over time,

<Dute) dwey, > 35-5(»&-03
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Can show that,
averaged over time
and the ensemble
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Density Matrix Description of 2-Level Atoms

Evolution of coherence (fast variables)

collisional

QH_ = =\ [Nu +30) (£\] Q, ) history

=> Qult)= ”_(o\é;“’u"‘e_"" C,Owéco(—c'\

We need the ensemble average of @, ()

Assumptions:

—  From atom to atom AW () isa
Gaussian Random Variable

— Averaged over the ensemble <5CJC:L»']?Q"-O

— Collisions have no memory over time,

<Dute) dween > %5&-03

P

Can show that, —‘f+d£'5w(‘t‘3 iy
averaged over time <e Jo > —g YT
and the ensemble &

It follows that: G, (¢) = @, (& ™" e tT

Add this decay to the equation of motion to get

ém = L‘5;1‘1)8.!5, + C'éu)e.c,: B Go‘).u - 1/'5)?)9.

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

. — 17

é'u = (éu}S.E, - r*]' Qﬂ ¥>E
Qi = (@y)se ~ 180 —Qiri

This is strange because Tr @ (L) is not preserved

Convenient when working with quantities
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Density Matrix Description of 2-Level Atoms
It follows that: g,()= Q,(le it /T Effect on probability amplitudes

Populations are ensemble averages of the type
g, [4) = <(,802> =<lg (ot ye T
~-Lt
Q= (@gg t (By)g = — (iw, ~"'T)g, 0y, ) = 18,12 = L[ (0D e F

Add this decay to the equation of motion to get

When the populations decay, the averages of the

i . . s robability amplitudes must decay accordingly,
Simple Model of Inelastic Collisions P yamp y gly
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As modeled by, e. g., Milloni & Eberly, {la, By )=<Lla,0l>e” 2
this is a steady loss of atoms <[Q;_(6\[>=<M,_[é)(7@'- :_6'&
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This is strange because Tr @(t) is not preserved This gives us elaitic ineliStic
Convenient when working with quantities
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Density Matrix Description of 2-Level Atoms

Effect on probability amplitudes
Populations are ensemble averages of the type
g, [4) = <[, =g (orrye T
0y, 1) = <10, = a0y e E

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

{ayey=d0,@ > e 4t
Llogely=((aane e

Thus, for the coherences

This gives us elastic inelastic
\’ v
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Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

o

atom-field
interaction

Warm-up: A Bayesian recipe for Mixed States
Alice has 2-level atoms A & B initially in state |25

Step (1) She applies a Hamiltonian that drives
the evolution

120,127, = 0,125,125, + 04115115

Step (2) She gives atom B to Bob and asks him to
measure if it is in (1), or 125, and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state
Q= 10,1*11505<1 [+ 18,123 <2

Note that as long as [, 12>0 , this decreases the prob.

that Alice’s atom is in state r2>h. Repeating these steps

will thus cause a gradual, irreversible decrease of ra,fl,

i. e., a decay of the excited state population of her atom
4



Density Matrix Description of 2-Level Atoms

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

125
A, @ —>
- 119

atom-field
interaction

Warm-up: A Bayesian recipe for Mixed States
Alice has 2-level atoms A & B initially in state |25

Step (1) She applies a Hamiltonian that drives
the evolution

12,1275 = 0,125,125, + 04115115,

Step (2) She gives atom B to Bob and asks him to
measure if it is in (1), or 125, and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

Q= 10,[*11040<2(+18,(* 113, 2

Note that as long as 13,12>0 , this decreases the prob.

that Alice’s atom is in state [Dh. Repeating these steps
will thus cause a gradual, irreversible decrease of [04,[",
i. e., a decay of the excited state population of her atom

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

125
SO
117

atom-field
interaction

Final OPTI 544 Lectures:

T (0) D= l&z>ﬂ oe Doer

[E)Y=C, , ) ILY V0e Do B D C, (o1, 1021 0e
A P

photon ““in the atom”

» evolution over time ¢

photon in field mode &

Cannot recover info in continuum of field modes

5

Probability [C, {é)]z of having no decay
Probability Zlchu({;)l" of having decay
%

No Coherence established between states |17, [2)




Density Matrix Description of 2-Level Atoms

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

125
A,, @ «—>
17

atom-field
interaction

Final OPTI 544 Lectures:
fg (0) D= l2‘>ﬂl\Iac s

» evolution over time ¢

EF
[el£)>=C, 1) riga VoC Do B %cm GO, =
photon “in the atom” photon in field m‘!:de k

Cannot recover info in continuum of field modes

P

Probability lc’-P {#,)[z of having no decay
Probability Zlctu(é)l" of having decay
%

No Coherence established between states |17 [2)

Conclusion: Decay moves population [2) <> 11>
at rate A,,, damps coherence at rate A,,/ﬂ

Q‘l‘ = A?.l Qll ’ g:u= "A‘Ll Q’H
'S _ A _*x
glz_ -5}" @n_ - 921

Putting it all together:

<, = ~f; @, "‘Az:?n"';‘(x@rz’)(*&,)
éu = "ré_c?u”Au By "";: (Xglﬁ "X*gu>

® . [V o 8
Q =(18~3) @+ %(gu"?u} = Q"

[0y

I A
where S — Mg T2
Pzt ez

Density Matrix

These are our desired Equations of Motion
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Emission and Absorption — Population Rate Equations

So far we have derived a set of Egs. of Motion
for the elements of the Density Matrix:

é Q;;*Az:?n "'(X@H; X ‘Z.l)

éu ==Tg Qyy—hy, By + "'g; (X?n ’X*Qu )

Qm ‘('A"F’) 9:9."' (gu Q)=

A f;+
where = — 4 Y P2
/3 't'+ ~ t = N

(*) These eqs. are difficult to solve in the general
case. See, e. g., Allen & Eberly for discussion
of some special cases and a reference to
original work by Torrey et al.

() For 2 3 levels the Density Matrix Equations
get very cumbersome and it is desirable to
simplify the description when possible.

(%) One such simplification takes the form of
Rate Equations for the populations only.

Steady State Solutions: (requires [} <17 =0)

' X*/s
Qm.‘ —:A (gn gu)

Let é,,zo »
6= 2L ey -2.)

—_-

(X1

Xgll—‘xfgr E;%L (@ -8,)

Plug into eqs for populations to get

’ 7(‘)./3/
G\ Ay Bt oy /j (Su-g,) =0

IX1*A1y
A+ [.’.

ésv =’Au‘?9_2 7 (Bye-8y) =0

From these eqs. we can find steady state values

for the populations and coherences in terms of
X A4, when (and only when) @, =g, =0
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Emission and Absorption — Population Rate Equations

Steady State Solutions: (requires [} <17 =0)

IX*/Z
) . Q= R-id (gn Q”)
t =
e gl! 6 [:> IX/l
Q‘ll [L-HA (gﬁ‘l gn)
‘-V

(X1
Xg,l—v("‘g, l‘;?)[%. (©y-8,)

Plug into eqs for populations to get

’ 1X1%/3/
G\ Ay Bt oy /f (Su-g,) =0

IX1*A13

AL+ [3' (919. Qlly =0

)
<Y Aﬂ@u

From these eqs. we can find steady state values

for the populations and coherences in terms of
X,A Ay, £ when (and only when) €, =g, =0

Note: The terms remaining after elimination of
Qs , @y, are commonly identified with induced or
stimulated processes. They are proportional to
'X1%, |E, | and thus the intensity of the light field.

Stimulated Emission Rate

Def: Absorption Rate

sl feSe k@l
LA eh (-0 pt

Schematic:

Rl\.gu plagn A'll 922




Begin

Emission and Absorption — Population Rate Equations 02-20-2024

Note: The terms remaining after elimination of
Qs , ., are commonly identified with induced or
stimulated processes. They are proportional to

X [Eolland thus the intensity of the light field.

Stimulated Emission Rate

(i S6,/1" @)1
(L0, —CI)2 + p‘L

Def: Absorption Rate

m"-é/z _

3 AL.[_ (3‘).

Schematic:

Ru_gu nl?.gt‘! A'll 922

End 02-15-2024

Elastic Collision Broadening

In hot and dense gases the dominant source of
relaxation is often elastic collisions between atoms

reaches steady state
>N, 0, A s
let B20.0, 4 & much faster than G, ©,,

We can solve the eq. for Quassuming itisin
steady state for given values of G, €y,

This yields Rate Equations for the populations
only, valid in the collision broadened regime

Qu=- q@m T Au@u"" 'Qw_ (95_\)_’91,,3 *0

én = 'r;- 841 ~Ay Qo — Ry L@zz’g’“ E XY

(*) This is another example of adiabatic elimination
of a fast variable (the coherence), leaving us with
simpler equations for the slower variables.

(*k) From these we can find the transient behavior
of the coherences © @,



Emission and Absorption —

Elastic Collision Broadening

In hot and dense gases the dominant source of
relaxation is often elastic collisions between atoms

reaches steady state
SOG4, B SO
let B0, 0, A » much faster than G,, ©,,

We can solve the eq. for Quassuming itisin
steady state for given values of §, ©y,

This yields Rate Equations for the populations
only, valid in the collision broadened regime

Qu=-[8Qu+ A4 8y + Ry (94 -],)*0

én = "{;- S ~Ay QR (G- S E XV

(*) This is another example of adiabatic elimination
of a fast variable (the coherence), leaving us with
simpler equations for the slower variables.

(%) From these we can find the transient behavior
of the coherences Q @,

Population Rate Equations

Note: When collisions are very frequent the dipole
</XI) is oriented at random relative to the
driving field. In that case

— =5 |
<|,‘111' s Eo[ﬁ->aw6[e,s = E ’K‘?ﬁ. lEall»

(Iq g E BRI Dngles 2
Rll = AL, F:

_ v IXIQ'E/Z
B 4 Al_,_ﬂ?.

Photon Flux and Cross Section

Let Rnaq‘m)d) where J%,o\;‘qu;:cao[E,,l"
%/_J

“photon flux” intensity

This allows us to recast the Rate Eqs

an —1Q,+8,8 + Wfb\d)(@u -9, )

éu: - 0%y~ Ay, Qu ~ G(A)d) (Qy & >
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Emission and Absorption — Population Rate Equations

Note: When collisions are very frequent the dipole

(@) is oriented at random relative to the
driving field. In that case

<|/K‘11' ¢ Eo[L>aw3£e,s - '.7_‘7,. ’6‘3‘- 'E,| ®

o - Iy B/ Dagles B 1 1X12R/2
1= Ah(&’ —EA"—l-ﬂ"

Photon Flux and Cross Section

Let Rna@[mqb where ﬁo\;‘@:-'icao[l&,,l"

“photon flux” intensity

This allows us to recast the Rate Eqs

Qn = -0, +8,8, + Wfb\fﬁ(@u -9, )
éu: - 0%y~ Ay, Qu ~ G(A)d} (Qy ~&u >

We see that per atom, per unit time

# of absorption events

c>dQ,
o (8)0

# of stim. emission events

Note: Given N atoms, the total # of events are

Ngy,, NG, - This is useful when we care
about the total power in the light field,
e. g., in the context of laser theory

Solution of the Rate Equations

let [[ =, =0 andplugin & =1-@,
g

éu = A‘u‘?n"wmms (29 - 1)

=~ \(% + mump} Qg+ T(AVD
X

This solution is a damped approach to Steady State!
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Emission and Absorption — Population Rate Equations

We see that per atom, per unit time

-5t
Qg (£) = IQnCO’) ~Cun C°°3]@ e Qyy ()
# of absorption events = O'FDMbQU
where
# of stim. emission events = O'(A3¢ Sy g—[m(ﬁ
= (Au'\"lGZ‘ABCb) ’ Q‘HCOQX = AN.{.IQ—(A')@

Note: Given N atoms, the total # of events are
N@y, NG, - This is useful when we care

about the total power in the light field, Gy, (&)
e. 8., in the context of laser theory T

steady state anoé\

Solution of the Rate Equations

LN

let [/ =l =0 andplugin € =1-&,, time constant 1/y

gmcw -
— -

> ¢

gu == Au‘gn"‘@[ﬂ\qs (191_\ - 1) (%) This transient behavior is valid in the collision

broadened regime.
=~ (Ay, +25(AVD) @+ TCAVD

(*) Without collisions the transient regime
X Is one of damped Rabi oscillations.

The solution is a damped approach to Steady State! (%) The steady state value gﬁw is good regardless
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Emission and Absorption —

Gy () = { Q33 (0) ~ &y, C°°)] S Qy ()

where

gl
Ayt LT(0)0

= (Au'\"l@(A}Cﬁ) ’ Q‘PICOQ\

Qyy )
T steady state anoé\

\

Quw) ] time constant 4/5/

> ¢

(*) This transient behavior is valid in the collision
broadened regime.

(*) Without collisions the transient regime
Is one of damped Rabi oscillations.

(%) The steady state value gntoo') is good regardless

Population Rate Equations

Numerical simulation of Density Matrix Eqs
(Optical Bloch Picture).

Figure from Milloni & Eberly

1.0 T T 1

00

00 T

00F X=100 v
B =15A e -
-006} V &
-012F w - 3 X=10A A
g B =30A
‘0.18 ' 1 | _0'4 1 1 1
04 o7 10 13 04 o7 10 13
At At
(c) (d)
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Emission and Absorption — Population Rate Equations

Limiting cases:

_ ~gt
99_1 ('Q = {Qn(o') "Q«u Cob)] e T Qg (o) (T[A)(b o B R o) = 6

where T()¢
Q"[A}é Q’[A)(p « Aﬁl [:> Qqy (00) = A

¥=(Ay+1678YH) , Gay(ed) = Ag + LT(0)P

SG>0,, B Qubs) = !/9 < Saturation!
|

By (&) 9
) steady state O, (os) Rewrite ©,, () using 'Q|1=W[A5¢ = I;;l[ é 3
+
/‘ NP X1*p28,,
. 290 Y
0,,L0) - time constant 1/y A""‘[&L* [XT*3/A,,
>t Plot ©, (=8) vs A: HWHM line width:
e, (c0) - 9 N
w Ay, =y BHatIN/A,,
(%) This transient behavior is valid in the collision
broadened regime. _ /_! \/1+ 2T (o)
- A
(%) Without collisions the transient regime 5A H
Is one of damped Rabi oscillations. N tlg, (used 5 (o) Cﬁ _ _I_)(_lz_ )
2
(*) The steady state value gntoo') is good regardless > A Power Broadenini'
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Emission and Absorption — Population Rate Equations

Limiting cases:

TBYD <Ay,

glayp=0 B 8, =0

D Qulw)=

5(0)G
Ay,

SO >0,, B Qubs) = !/g < Saturation!

Q.E
Rewrite ©,, () using ‘Qu:G‘[A}qS = ch_ld_ﬂ/f
ol [X1*B/24,,
» g?.‘l B A1+[&L+ [X[!.(_;/Am

Plot ©y, (%) vs A:

Q,, ()
A

&— 2A[19.

> A

HWHM line width:

Ay, =y BHetINR/A,,

270\
==/$ \/‘H‘-

Aq,

(used GV = -g%)

Power Broadening: Rewrite

By, = By1+6/Gsar = 1+ T/Tgur
where

A‘L( — - 'ﬁ'CJA‘Ll
100y | TSATT outo)

Cf’sm' =

3 : natural linewidth

Power Broadening in molecular beam spectroscopy:

N\
collimated
atomic beam
\
N y LIF vs A
oven
laser @ \:)— / | \
detuning A

Keep T « T, for best spectroscopic resolution

15



Emission and Absorption — Population Rate Equations

Power Broadening: Rewrite

By, = By1+6/Gsar = 1+ T/Tgur
where

C}S - An, — 'rﬂ‘a)/\‘u
AT 5 Tgtoy ' TSATT 2ut0)

A3 : natural linewidth

Power Broadening in molecular beam spectroscopy:

N\

collimated
atomic beam

— >
—\ \» LIF vs A

oven
laser @ \:)— / | \
detuning A —

Keep T & T, for best spectroscopic resolution

/4

End 02-20-2024
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