Density Matrix Description of 2-Level Atoms

Mental Warmup: What is a probability?
(1) Example: Coin toss

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)
(2) Example: Quincunx
https://www.mathsisfun.com/data/quincunx.html
- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

This is the Bayesian Interpretation of Probability
(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)
(4) Mixed Quantum \& Classical Case
- We can easily envision a hybrid Quincunx that is part classical, part quantum.
- Physics needs an efficient description these kinds of intermediate situations

Density Matrix Description of 2-Level Atoms

(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)
(4) Mixed Quantum \& Classical Case
- We can easily envision a hybrid Quincunx that is part classical, part quantum.
- Physics needs an efficient description these kinds of intermediate situations
(5) Example: Quantum Trajectories
- Ensemble of 2-level atoms undergoing Rabi oscillation with random decays

Definition: A system for which we know only the probabilities γ_{k} of finding the system in state $\left\langle\psi_{k}\right\rangle$ is said to be in a statistical mixture of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

Density Matrix Description of 2-Level Atoms

(5) Example: Quantum Trajectories

- Ensemble of 2-level atoms undergoing Rabi oscillation with random decays

Definition: A system for which we know only the probabilities y_{k} of finding the system in state $\left|\psi_{k}\right\rangle$ is said to be in a statistical mixture of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

Definition: Density Operator for pure states

$$
g(t)=|\psi(t) \times \psi(t)|
$$

Definition: Density Matrix

$$
\begin{aligned}
& |\psi(t)\rangle=\sum_{n} C_{n}(t)\left|u_{n}\right\rangle \Rightarrow \\
& S_{p n}(t)=\left\langle\mu_{p}\right| S(t)\left|u_{n}\right\rangle=C_{p}(t) C_{n}^{*}(-t)
\end{aligned}
$$

Definition: Density Operator for mixed states

$$
Q(t)=\sum_{\vec{k}} \gamma_{k} S_{k}(t), \quad \rho_{k}=\left|\psi_{k}(t) \times \psi_{k}(t)\right|
$$

Note: A pure state is just a mixed state for which one $\gamma_{k}=1$ and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

Density Matrix Description of 2-Level Atoms

Definition: Density Operator for pure states

$$
Q(t)=|\psi(t) \times \psi(t)|
$$

Definition: Density Matrix

$$
\begin{aligned}
& |\psi(t)\rangle=\sum_{n} C_{n}(t)\left|u_{n}\right\rangle \Rightarrow \\
& S_{p n}(t)=\left\langle u_{p}\right| \rho(t)\left|u_{n}\right\rangle=C_{p}(t) C_{n}^{*}(-t)
\end{aligned}
$$

Definition: Density Operator for mixed states

$$
Q(t)=\sum_{\vec{k}} \gamma_{k} S_{k}(t), \quad S_{k}=\left|\psi_{k}(t) \times \psi_{k}(t)\right|
$$

Note: A pure state is just a mixed state for which one $\gamma_{k}=1$ and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

Let A be an observable w/eigenvalues a_{n} Let P_{n} be the projector on the eigen-subspace of a_{n} For a pure state, $g(t)=|\psi(t) \times \psi(t)|$, we have

$$
\begin{aligned}
&(*) \operatorname{Tr} \rho(t)=\sum_{n} S_{n n}(t)=\sum_{n}\left|c_{n}\right|^{2}=1 \\
&(*)\langle A\rangle=\langle\psi(t)| A|\psi(t)\rangle=\sum_{p}\left\langle\psi(t)\left[A\left|u_{p} X u_{p}\right| \psi(t)\right\rangle\right. \\
&\left.=\sum_{p}\left\langle u_{p}\right| \psi(t) X \psi(t)|A| u_{p}\right\rangle=\sum_{p}\left\langle u_{p}\right| \rho(t) A\left|u_{p}\right\rangle \\
&=\operatorname{Tr}[\rho(t) A] \quad\left(\left|u_{p}\right\rangle \text { basis in } \mathcal{X}\right)
\end{aligned}
$$

(*) Let P_{n} be the projector on eigensubspace of a_{n}

$$
P\left(a_{n}\right)=\langle\psi(t)| P_{n}|\psi(t)\rangle=T \Gamma\left[g(t) P_{n}\right]
$$

$$
\text { (*) } \dot{Q}(t)=|\psi \dot{\varphi}(t) \times \psi(t)|+|\psi(t) \times \dot{\psi}(t)|
$$

$$
\left.\left.=\frac{1}{i \hbar} H|\psi(t) \times \psi(t)|-\frac{1}{i i_{h}} \right\rvert\, \psi(t) \times \psi(t)\right] H
$$

$$
=\frac{1}{i \hbar}[H, S]
$$

Density Matrix Description of 2-Level Atoms

Let A be an observable w/eigenvalues a_{n}
Let P_{n} be the projector on the eigen-subspace of a_{n}
For a pure state, $g(t)=|\psi(t) \times \psi(t)|$, we have
(*) $\operatorname{Tr} g(t)=\sum_{n} S_{n n}(t)=\sum_{n}\left|c_{n}\right|^{2}=1$
$(*)\langle A\rangle=\langle\psi(t)| A|\psi(t)\rangle=\sum_{0}\left\langle\psi(t)\left[A\left|u_{p} X u_{p}\right| \psi(t)\right\rangle\right.$ $\left.=\sum_{p}\left\langle u_{p}\right| \psi(t) \times \psi(t)|A| u_{p}\right\rangle=\sum_{p}\left\langle u_{p}\right| \rho(t) A\left|u_{p}\right\rangle$ $=\operatorname{Tr}[\varrho(t) A] \quad\left(\left|u_{p}\right\rangle\right.$ basis in $\left.\mathscr{H}\right)$
(*) Let P_{n} be the projector on eigensubspace of a_{n}

$$
P\left(a_{n}\right)=\langle\psi(t)| P_{n}|\psi(t)\rangle=\operatorname{Tr}\left[\rho(t) P_{n}\right]
$$

(*) $\dot{Q}(t)=|\psi \dot{(}(t) \times \psi(t)|+|\psi(t) X \dot{\psi}(t)|$

$$
\begin{aligned}
& =\frac{1}{i \hbar} H \left\lvert\, \psi(t) \times \psi(t)\left[-\frac{1}{i \hbar}|\psi(t) \times \psi(t)| H\right.\right. \\
& =\frac{1}{i \hbar}[H, O]
\end{aligned}
$$

Let A be an observable w/eigenvalues a_{n}
Let P_{n} be the projector on the eigen-subspace of a_{n}
For a mixed state, $g(t)=\sum_{\vec{k}} \gamma_{k} \rho_{k}(t), \rho_{k}=\left\langle\psi_{k}(t) X \psi_{k}(t)\right]$
(*) $\operatorname{Tr} \varphi(t)=\sum_{k} n_{k} \operatorname{Tr} Q_{k}(t)=1$
$(*)\langle A\rangle=\sum_{k} n_{k}\left\langle\psi_{k}(t)\right| A\left|\psi_{k}(t)\right\rangle=\sum_{k} \gamma_{k} \operatorname{Tr}\left[\rho_{k}(t) A\right]$,

$$
=\operatorname{Tr}[\rho(t) A]
$$

(*) Let P_{n} be the projector on eigensubspace of a_{n}

$$
P\left(a_{n}\right)=\sum_{k} \gamma_{k}\left\langle v_{k}(t)\right| P_{n}\left|\psi_{k}(t)\right\rangle=\operatorname{Tr}\left[\rho(t) P_{n}\right]
$$

(*)

$$
\begin{aligned}
\dot{\Phi}(t) & =\sum_{k} \eta_{k}(|\psi \dot{\psi}(t) \times \psi(t)|+\mid \psi(t|X \psi(t)|) \\
& =\sum_{k} \eta_{k} \frac{1}{i \hbar}(H[\psi(t) \times \psi(t)|-|\psi(t) X \psi(t)| H) \\
& =\frac{1}{i \hbar}[H, \rho] \quad \begin{array}{c}
\text { Density Operator } \\
\text { formalism is general ! }
\end{array}
\end{aligned}
$$

Density Matrix Description of 2-Level Atoms

Let A be an observable w/eigenvalues a_{n} Let P_{n} be the projector on the eigen-subspace of a_{n} For a mixed state, $g(t)=\sum_{\vec{k}} \mu_{k} \rho_{k}(t), \rho_{k}=\left[\psi_{k}(t) \times \psi_{k}(t)\right]$
(*) Let P_{n} be the projector on eigensubspace of a_{n}

$$
P\left(a_{n}\right)=\sum_{k} \gamma_{k}\langle\psi(t)| P_{n}\left|\psi_{k}(t)\right\rangle=\operatorname{Tr}\left[\rho(t) P_{n}\right]
$$

(*) $\dot{\rho}(t)=\sum_{k} r_{k}\left(\left|\psi^{\prime}(t) \times \psi(t)\right|+1 \psi(t) \times 2 \dot{f}(t)\right)$

$$
=\sum_{k} p_{k} \frac{1}{i_{\hbar}}(H[\psi(t) X \psi(t)|-|\psi(t) X \psi(t)| H)
$$

$$
=\frac{1}{i \hbar}[H, S]
$$

$$
\begin{aligned}
& \text { (*) } \operatorname{Tr} \varphi(t)=\sum_{k} n_{k} \operatorname{Tr} \varphi_{k}(t)=1 \\
& (*)\langle A\rangle=\sum_{k} n_{k}\left\langle\psi_{k}(t)\right| A\left|\psi_{k}(t)\right\rangle=\sum_{k} r_{k} \operatorname{Tr}\left[\rho_{k}(t) A\right], \\
& =\operatorname{Tr}[\rho(t) A]
\end{aligned}
$$

Important properties of the Density Operator
(1) ρ is Hermitian, $Q^{+}=\rho \Rightarrow Q$ is an observable
$\Rightarrow \exists$ basis in which ρ is diagonal In this basis a pure state has one diagonal element $=1$, the rest $=0$
(2) Test for purity.

Pure: $\quad S^{2}=Q \Rightarrow \operatorname{Tr} g^{2}=1$
Mixed: $\rho^{2} \neq \rho \Rightarrow \operatorname{Tr} \rho^{2}<1$
(3) Schrödinger evolution does not change the γ_{k}
$\Rightarrow\left\{\begin{array}{l}\operatorname{Tr} \Theta^{2} \text { is conserved } \\ \text { pure states stay pure } \\ \text { mixed states stay mixed }\end{array}\right.$

Changing pure \Rightarrow mixed requires non-Hamiltonian evolution - see Cohen Tannoudji $D_{I I I}$ \& $E_{I I I}$

Density Matrix Description of 2-Level Atoms

Important properties of the Density Operator
(1) Q is Hermitian, $Q^{+}=\rho \Rightarrow Q$ is an observable
$\Rightarrow \exists$ basis in which $\mathcal{\rho}$ is diagonal In this basis a pure state has one diagonal element $=1$, the rest $=0$
(2) Test for purity.

Pure: $\quad S^{2}=Q \Rightarrow \operatorname{Tr} g^{2}=1$
Mixed: $\rho^{2} \neq \rho \Rightarrow \operatorname{Tr} \rho^{2}<1$
(3) Schrödinger evolution does not change the γ_{k}
$\Rightarrow\left\{\begin{array}{l}\operatorname{Tr} 马^{2} \text { is conserved } \\ \text { pure states stay pure } \\ \text { mixed states stay mixed }\end{array}\right.$

Changing pure \Rightarrow mixed requires non-Hamiltonian evolution - see Cohen Tannoudji $\mathrm{D}_{\text {II }}$ \& $\mathrm{E}_{\text {III }}$

A cooks recipe - interpretations of \mathcal{Q}
Step 1 Add N atoms in state $\left\langle\psi_{A}\right\rangle$ to bucket A Add N atoms in state $\left|\psi_{B}\right\rangle$ to bucket B

We now have two ensembles, each of which consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.

The atom is in a pure state but we
Pick an atom from C
Which is Correct?
don't know if it is in $\left|\psi_{A}\right\rangle$ or $\left|\psi_{B}\right\rangle$

The atom is in a mixed state

$$
\rho=\frac{1}{2}\left|\psi_{A}\right\rangle\left\langle\psi_{A}\right|+\frac{1}{2}\left|\psi_{B} x \psi_{B}\right|
$$

Density Matrix Description of 2-Level Atoms

A cooks recipe - interpretations of \mathcal{Q}
Step 1 Add N atoms in state $\left\langle\psi_{A}\right\rangle$ to bucket A Add N atoms in state $\left|\psi_{B}\right\rangle$ to bucket B

We now have two ensembles, each of which consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.

Pick an atom from C
Which is Correct?

The atom is in a pure state but we don't know if it is in $\left|\psi_{A}\right\rangle$ or $\left|\psi_{B}\right\rangle$

The atom is in a mixed state

$$
\rho=\frac{1}{2}\left|\psi_{A} x \psi_{A}\right|+\frac{1}{2}\left|\psi_{B} x \psi_{B}\right|
$$

There is no difference!
The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions for observable outcomes then they are identical

Loosely, (i) is a frequentist view
(ii) is a Bayesian view

Quantum Bayesianism
Quantum States are States of Knowledge
(subjective)

Density Matrix Description of 2-Level Atoms

There is no difference!
The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions for observable outcomes then they are identical

$$
\begin{array}{ll}
\text { Loosely, (i) is a frequentist view } \\
& \text { (ii) is a Bayesian view }
\end{array}
$$

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

More about the Density Matrix
Choose a basis $\left|\psi_{k}\right\rangle=\sum_{j} C_{j}^{(k)}\left|\mu_{j}\right\rangle$. We define
Populations:
(real-valued)

$$
S_{n n}=\sum n_{k} c_{n}^{(h)} c_{n}^{(k) *}=\sum_{k} \eta_{k}\left|c_{n}^{(k)}\right|^{2}
$$

Single system: Prob of finding state $\left|u_{n}\right\rangle$
Ensemble: $\left|u_{n}\right\rangle$ occurs with freq. $\Theta_{n n}$

$$
\underset{\text { (complex-valued) }}{\text { Coherences: }} \quad S_{n j}=\left\langle C_{n}^{(k)} C_{j}^{(k) *}\right\rangle_{k}
$$

Note: Defining $C_{q}=I C_{q} \mid e^{i \theta_{q}}$ we have $\left\langle C_{n}^{(k)} C_{j}^{(h) *}\right\rangle_{k}=\langle | C_{n}^{(k)}| | C_{j}^{(k)} \mid e^{i\left(\theta_{n}^{(h)}-\theta_{\gamma}^{(k)}\right\rangle_{n} \leqslant\langle | c_{n}^{(h)}| | C_{j}^{(k)}| \rangle_{k}, ~}$

It follows that
$\Theta_{n n} \Theta_{p n} \leq \Theta_{n n} \Theta_{p p}$

$$
Q=\left(\begin{array}{ccc}
S_{n n} & \cdots & S_{n j n} \\
\vdots & \ddots & \vdots \\
S_{\gamma n} & \cdots & \Theta_{j n}
\end{array}\right)
$$

Density Matrix Description of 2-Level Atoms

More about the Density Matrix

Choose a basis $\left|\psi_{k}\right\rangle=\sum_{j} C_{j}^{(k)}\left|\mu_{j}\right\rangle$. We define
Populations:
(real-valued)

$$
S_{n n}=\sum n_{k} c_{n}^{(h)} c_{n}^{(k) *}=\sum_{k} \eta_{k}\left|c_{n}^{(k)}\right|^{2}
$$

Single system: Prob of finding state $\left|u_{n}\right\rangle$ Ensemble: $\left|u_{n}\right\rangle$ occurs with freq. $\Theta_{n n}$

$$
\begin{aligned}
& \text { (complex-valued) }
\end{aligned} \quad S_{n j}=\left\langle C_{n}^{(k)} C_{j}^{(k) *}\right\rangle_{k}
$$

Note: Defining $C_{q}=I C_{q} I e^{i \theta_{q}}$ we have $\left\langle C_{n}^{(k)} C_{j}^{(h) *}\right\rangle_{k}=\langle | C_{n}^{(k)}| | C_{j}^{(k)} \mid e^{i\left(\theta_{n}^{(h)}-\theta_{\gamma}^{(k)}\right\rangle_{h}} \leqslant\langle | c_{n}^{(h)}| | C_{j}^{(k)}| \rangle_{k}$

It follows that
$\Theta_{n r} \Theta_{p n} \leq \Theta_{n n} \Theta_{p p}$
with $=$ for pure states

$$
Q=\left(\begin{array}{ccc}
S_{n n} & \cdots & S_{n y n} \\
\vdots & \ddots & \vdots \\
S_{p n} & \cdots & S_{p n}
\end{array}\right)
$$

Example: 2-level atom w/random perturbations

The ensemble average $\rho_{n j}=\sum_{k} \gamma_{k} c_{n} c_{\eta}^{*} e_{\hat{p}}^{i \theta_{k}}$ is reduced by the randomly fluctuating phase

Dipole Radiation:

$$
\begin{aligned}
\langle\hat{\vec{\gamma}}\rangle & =\operatorname{Tr}[\rho \hat{\vec{\gamma}}]=\operatorname{Tr}\left[\left(\begin{array}{ll}
\Phi_{11} & \Theta_{12} \\
\Phi_{21} & \Theta_{22}
\end{array}\right)\left(\begin{array}{cc}
0 & \vec{\gamma}_{12} \\
\vec{\gamma}_{21} & 0
\end{array}\right)\right] \\
& =\Theta_{12} \vec{\gamma}_{21}+\Theta_{21} \vec{\gamma}_{12}=2 \operatorname{Re}\left[\Phi_{12} \vec{\gamma}_{21}\right]
\end{aligned}
$$

For an ensemble of pure states $w /$ different θ_{k}

$$
\langle\hat{\vec{\gamma}}\rangle=2 \sum_{k} \eta_{k} \underbrace{\operatorname{Re}\left[\varphi_{12}^{(k)} \vec{\gamma}_{21}\right]}
$$

Oscillating dipole w/phase that varies between atoms with different perturbation history

Density Matrix Description of 2-Level Atoms

Example: 2-level atom w/random perturbations

The ensemble average $\rho_{n \eta}=\sum_{k} \gamma_{j} c_{n} c_{\gamma}^{*} e^{i \theta_{k}}$ is reduced by the randomly fluctuating phase

Dipole Radiation:

$$
\begin{aligned}
\langle\hat{\vec{\gamma}}\rangle & =\operatorname{Tr}[\rho \hat{\vec{\gamma}}]=\operatorname{Tr}\left[\left(\begin{array}{ll}
\Phi_{11} & \Theta_{12} \\
\Phi_{21} & \Theta_{22}
\end{array}\right)\left(\begin{array}{cc}
0 & \vec{\gamma}_{12} \\
\vec{\gamma}_{21} & 0
\end{array}\right)\right] \\
& =\Theta_{12} \vec{\gamma}_{21}+\Theta_{21} \vec{\gamma}_{12}=2 \operatorname{Re}\left[\Theta_{12} \vec{\gamma}_{21}\right]
\end{aligned}
$$

For an ensemble of pure states w/different θ_{k}

$$
\langle\hat{\vec{\gamma}}\rangle=2 \sum_{k} \eta_{k} \underbrace{\operatorname{Re}\left[\Phi_{12}^{(k)}\right.} \vec{\gamma}_{21}]
$$

Oscillating dipole w/phase that varies between atoms with different perturbation history

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change $\operatorname{Tr} \rho^{2}$ (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

$$
\dot{Q}=-\frac{i}{h}[H, O]=-\frac{i}{\hbar}(H Q-Q H)
$$

matrix elements

$$
\dot{S}_{n m}=-\frac{i}{k} \sum_{k=1,2}\left(H_{n k} \Theta_{k m}-\Phi_{n k} H_{k m}\right)
$$

2-Level Atom $\Rightarrow\left\{\begin{array}{l}\mathbf{2} \text { populations } \\ 2 \text { coherences }\end{array} \frac{S_{12} \oint_{22} \rho_{21}}{S_{11}}\right.$

Density Matrix Description of 2-Level Atoms

Time Evolution of the Density Matrix
Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change $\operatorname{Tr} \rho^{2}$ (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

$$
\dot{Q}=-\frac{i}{k}[H, O]=-\frac{i}{\hbar}(H Q-Q H)
$$

matrix elements \qquad

$$
\dot{S}_{n m}=-\frac{i}{k} \sum_{k=1,2}\left(H_{n k} \Theta_{k m}-\Theta_{n k} H_{k m}\right)^{(*)}
$$

$$
\text { 2-Level Atom } \Rightarrow\left\{\begin{array}{l}
2 \text { populations } \\
2 \text { coherence } \frac{\Theta_{22}}{S_{12} \prod_{\uparrow} \Theta_{21}} \\
S_{11}
\end{array}\right.
$$

Consider the 2-Level Rabi problem with

$$
\begin{gathered}
H=H_{0}+V \text { \& } V_{12}=\frac{1}{2} \hbar X_{12} e^{-i \omega t}+C . c . \\
H=h\left(\begin{array}{cc}
0 & \frac{1}{2}\left(X_{12} e^{-i \omega t}+X_{12}^{*} e^{i \omega t}\right) \\
\frac{1}{2}\left(x_{21} e^{-i \omega t}+x_{21}^{*} e^{i \omega t}\right) & \omega_{21}
\end{array}\right)
\end{gathered}
$$

Set $X_{12}=X_{1} X_{2}=X^{*}$, substitute $\mathcal{S}_{12}=\tilde{S}_{12} e^{i \omega t}$
slow variable
(Pure state $\Rightarrow S_{12}=a_{1} a_{2}^{*}=c_{1}\left(c_{2} e^{-i \omega t}\right)$)

Substitute in (*), make RWA, and drop ~

$$
\begin{aligned}
& \dot{S}_{11}=-\frac{i}{2}\left(X \Theta_{12}-X^{*} \Theta_{21}\right) \quad \begin{array}{c}
\text { Rabi Eqs. for } \\
\text { pure and } \\
\text { mixed states }
\end{array} \\
& \dot{S}_{22}=\frac{i}{2}\left(X \Phi_{12}-X^{*} S_{21}\right) \\
& \dot{S}_{12}=-i \Delta S_{12}+i \frac{X^{+}}{2}\left(S_{22}-\Theta_{11}\right)=\dot{\Phi}_{21}^{*}
\end{aligned}
$$

