Begin 02-08-2024

Mental Warmup: What is a probability?

(1) Example: Coin toss

— We can describe physical states by
probability distributions

— Probabilities are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

— We can describe physical states by
probability distributions

— Probabilities are assigned based on

prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

This is the Bayesian
Interpretation of Probability

Density Matrix Description of 2-Level Atoms

(3) Example: Quantum Quincunx

— We can describe physical states by
guantum wavefunctions (state vectors)

— Quantum states are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, quantum states are
subjective ( states of knowledge)

(4) Mixed Quantum & Classical Case

— We can easily envision a hybrid Quincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations



Density Matrix Description of 2-Level Atoms

(3) Example: Quantum Quincunx (5) Example: Quantum Trajectories

— Ensemble of 2-level atoms undergoing

— We can describe physical states by Rabi oscillation with random decays

guantum wavefunctions (state vectors)

— Quantum states are assigned based on P Atom #1 R Atom #2 P Atom #3 ...
prior knowledge, updated when N A A
additional info becomes available
— As such, quantum states are /EA/J § / \ f% / /gf%/\
subjective ( states of knowledge) > — = - >
(4) Mixed Quantum & Classical Case {ig_ Average

— We can easily envision a hybrid Quincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations

B

Definition: A system for which we know only
the probabilities 41y, of finding the system in

state (1, is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state
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(5) Example: Quantum Trajectories Definition: Density Operator for pure states
— Ensemble of 2-level atoms undergoing =
Rabi oscillation with random decays Q“) ) X UCE|

h  Atom#1 A Atom#2 R Atom #3 ...
) ] f Definition: Density Matrix

/ éﬂ/gf _AM /i/\ i/\ 1310 = 2 G0 14,> »
-

Con [4) = <Ml OB | M, = Col) Cf )

109‘ Average

A
Definition: Density Operator for mixed states

QW) =2 Ay Qut), G =1, (O Ky )|
%

v

Note: A pure state is just a mixed state for
which one 4l =1 and the rest are zero.

Definition: A system for which we know only

the probabilities 41y, of finding the system in

state (1, ) is said to be in a statistical mixture ] ] ]
of states. Shorthand: mixed state. The terms Density Operator and Density Matrix

are used interchangeably

Shorthand for non-mixed state: pure state
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Definition: Density Operator for pure states

QW) = 14 ) X U(E)|

Definition: Density Matrix
Iy )y = z;_c,,u)wp o
Cpn [4) =Ml OB [ M, = Col) G H)

Let A be an observable w/eigenvalues O,

Let Q, be the projector on the eigen-subspace of O,

For a pure state, Q(£) = | {+) X y(L)| , we have

Definition: Density Operator for mixed states

Q) =% Ay Qule), € = (1, () Kyg )|
%

Note: A pure state is just a mixed state for
which one 4lp =1 and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

(%) Tr Q)= Q)= I, =1
() (A= CHOIARHED = CHOIA Kl

"Z<M |y XA up> —z(MplgGE\A [y
—W[Q@é}ﬂ] ”MP> ba5|s in f)

(%) Let ©, be the projectcr on eigensubspace of QA

P,) =818, [ty =Tr[g®)L,]

(%) é[g:l'zp(llxzp(ﬂ[-rl‘lfta)(ﬁéﬁ
= & HIBEL)XYkt) [-— o e H

:f:l{% Hgl
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Let A be an observable w/eigenvalues 0,

Let 1:3. be the projector on the eigen-subspace of O,

For a pure state, Q(£) = | {+) X 4(£)| , we have

(%) Tr Q)= 2‘3-&) =§lc,,l’-= 1

(%) Y= LA =D CHOIA X D)
=D AUy =) Lol etoalay
’—ﬁﬁ‘[g(é‘rﬂ] (Imp> basis ’iDn €X)

(%) Let ﬂ be the projector on eigensubspace of & ,

Per,) = <418, 1ty =Tr[Qt8, ]

(%) é(g:lu{{—lxzp(ﬂ[-rl‘lna)(ﬁéﬂ
=L H mze)xuw[-—;-;; Xyt H

=i [Hg]

Begin 02-13-2024

Let A be an observable w/eigenvalues 0,

Let Q, be the projector on the eigen-subspace of O,

For a mixed state, Q(+) =%fm Qlt) » €p =1, [£)XYg (£)]

(%) Trolt) = %m'rpg&cﬂ =4
(%) <A =.Z: IXOAB LA % (R THQUORT

="Ir[@®)AT

(%) Let £, be the projector on eigensubspace ofa,

Pla,) -"—%m%(ﬁ)l P I, 10 = Te[QHIP)]

() QU = >y (IuEEX 6L+ 1pAeoCuig
[
=th& -7 (HUMEAXp0)] - et | H)

Density Operator

=g el

formalism is general !
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Let A be an observable w/eigenvalues 0,

Let F,f, be the projector on the eigen-subspace of O,

For a mixed state, Q(+) :Zm Qlt) » €=Uyt X Yg (£)]
%

(%) Tro(t) = %zma'_l?‘g&(-ﬂ =4
(%) <A %‘ IXOAB LA % e TrlG O]

="Ir[®)A]

(%) Let Q, be the projector on eigensubspace of G ,

P,) :%/m(zﬁ(ﬂl D[4,y = Tr[QHIR ]

() QU= >y (X yee) -+ 1pdeocyig)
[
=th& -7 (HTHa X~ etenoget) H)

Density Operator
formalism is general !

-1
- e [H.?]

Density Matrix Description of 2-Level Atoms

Important properties of the Density Operator

(1) QisHermitian, 9"=@ ¥ © is an observable

® 3 basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =@

(2) Test for purity.
Pure: Gg'=Q ® Tre: =1
1

e
Mixed: ©*%+Q % T g«

(3) Schrodinger evolution does not change the Ay

{ ‘T?'g" is conserved

pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D,; & E;,
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Important properties of the Density Operator

(1) Qs Hermitian, g*=g B © isan observable

®» J basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =

(2) Test for purity.
Pure: Gg':=Q ®» Trel =1

e
Mixed: 9"#9 . ‘T?g‘<1_

(3) Schrodinger evolution does not change the A

Tr g‘“ is conserved
E pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E;;,

A cooks recipe — interpretations of ©

Step 1 Add N atoms in state [U,) to bucket A
Add N atoms in state |, to bucket B

P

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.

N = [, N x [

The atom is in a pure state but we

Picl]grgrrina(t:om don’t know if itisin [y, or |1,

Which is The atom is in a mixed state
Correct? t [
Q= 57 14 Xql +3 14X,
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A cooks recipe — interpretations of ©

Step 1 Add N atoms in state [%,) to bucket A
Add N atoms in state |, to bucket B

P

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.
N x [Yg> N x %>

N = [, N x [Yg>

The atom is in a pure state but we

Piclf(rgrr\na(t:om don’t know ifitisin [y, or |1,

Which is The atom is in a mixed state
Correct? t [
=3 14q Xl +3 14X Y, |

There is no difference!

The two interpretations lead to identical predictions
for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions
for observable outcomes then they are identical

Loosely, (i) isa frequentist view

(ii) isa Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge
(subjective)
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There is no difference! More about the Density Matrix
The two interpretations lead to identical predictions Choose a basis [.%2 =§C{MIM-> _ We define
for any measurement we can do on atoms from C 5 '

Populations:
(real-valued)

Quantum Mechanics:
If two descriptions lead to identical predictions

gm“: S’Ylk Clvt'acih)# ='% Ve lcf:)ll

for observable outcomes then they are identical . o
- Single system: Prob of finding state 14 %

Ensemble: |4 % occurs with freq. ©

Loosely, (i) isa frequentist view

(ii) isa Bayesian view Coherences:

Qn»(F <C‘£} C%AX%,'

(complex-valued)

Quantum Bayesianism

Note: Defining C9_= lcq[eieﬁ we have

Quantum States are States of Knowledge Y &), Ll (O o] 1l ()
= n (Lle
(subjective) <Cy G %« <[C["‘ ”CI‘ e T >:.‘< v ”Cf‘ I>&

It follows that S~ - gmam
?ntpgfms gvmgfl-p g= . . ’ . :
Gen > B
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More about the Density Matrix

Choose a basis [,) =§C§M > We define
J

Populations:
(real-valued)

Single system:  Prob of finding state 14 )

Ensemble: |4 % occurs with freq. Q

Coherences:
(complex-valued)

b)¥
= <Cn

Note: Defining C9_= lCQr(e;eﬁ we have

B) A _ g L8 A8, OB ¢t Al ACR)
(EP = ICENC ™ =5 5 L1, IC 1,
It follows that G - 9,,,2{l
CvSpn$ CmSpp 8= | 1 .

with = for pure states Sen *°° grn

Example: 2-level atom w/random perturbations

E A
Perturbing events cause

random phase shifts 2!®

2y 12y

between states.
>t P

)
The ensemble average pr = &Z'K'%C"C;‘ e T‘*

is reduced by the randomly fluctuating phase

115 W 11>

Dipole Radiation: B
d-rigi1 =T el 5]

= gn:ﬁtu'{' Qq_,’-f\n," ﬁ-RQ[@ll;ﬁ‘Ll‘—l

n

-

For an ensemble of pure states w/different ©y,

<’?‘> =21 %'K’& Ref‘?;({ﬂ Jf‘:ﬂ

Oscillating dipole w/phase that varies between
atoms with different perturbation history

10
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Example: 2-level atom w/random perturbations

Eq n>
1> —=. 1o Perturbing events cause
random phase shifts 2 e
15 W 11> between states.
> ¢ - -

The ensemble average g""(‘ g—"bcnc‘(‘ T

is reduced by the randomly fluctuating phase

Dipole Radiation: _
d-migh=[(g ol O]

= Qu/_ﬁuﬁp gq_,;ﬁn_: ﬁ—RQtQILJF\?—l’?

For an ensemble of pure states w/different ©y,

>=2 Z’(‘& R@YQM ]

Oscillating dipole w/phase that varies between
atoms with different perturbation history

Time Evolution of the Density Matrix

Challenge: We need “equations of motion” that
combine the Schrédinger Equation
with the effect of processes that can
change Tr € (measure of purity)

Approach: We do not have time for a rigorous

derivation, so will rely on plausible
arguments to justify the equations

Schrédinger Evolution: In general, we have
g =-+He] =1 (hg-gH)
matrix elements —J—
Qnm - —N z (H"L Qﬁm w& H& \

..,z_

2 populations
2-Level Atom » { Pop Qs ( } S
2 coherences

€

11
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Time Evolution of the Density Matrix

Challenge: We need “equations of motion” that
combine the Schrédinger Equation
with the effect of processes that can
change “Ir gz (measure of purity)

Approach: We do not have time for a rigorous

derivation, so will rely on plausible
arguments to justify the equations

Schrédinger Evolution: In general, we have

g =-+lHe] =-L(Hg-gH)

matrix elements S
gnm - N Z (H"'L 9& W& H&m

..fz_

(%)
)

2 populations
2-Level Atom ) { PopP Qs C )&,
2 coherences

§(,

Consider the 2-Level Rabi problem with

H=HV & V,=7kX,e & ee

#

o i(X”Le:io.n‘,+ X'-;e;ué)

H=4

;‘_(XL,G,'”" X, e-wks Wy,

_ _E : -~ It
Set W, =X, X, =X", substitute Q, =g, e
ATslow variable
*® ~¢
(Pure state B Q=4 Gy =C, (¢, & we))

Substitute in (%), make RWA, and drop ~

s * Rabi Eqgs. for
&= ,{(X@!‘L"x ?21B pure and

. . . mixed states
~ 1
Qn = :(XQ,L'-X ng)

° . Xt e
9|L="‘A§>u‘”'§‘ (911."‘3:;) ‘9:5

End 02-13-2024 12



