
OPTI 544 Solution Set 3, Spring 2024 
Problem 1  
(a) The equations of motion for the probability amplitudes in the RWA, using the “slow”

variables and setting , are

, , . 

(b) If  then  if and only if  at all times.  That requires 

. 

Now   . 

Consistent with the above, we choose ,         

Note:   If   then   are constant 

(c) If the driving field does not lead to a non-zero probability amplitude in the excited state
 then there can be no induced dipole moment .  This is because  and  of necessity

must be of the same parity to allow for Raman coupling in the first place. That means there
can be no absorption or emission of light, and as a result the wave propagates without loss
of intensity.

Note:  The state found in (b) above is referred to as a “dark state”.
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Problem 2 
 
(a) Taking the outer product of the state vectors we find 
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  Then  

 

       .     Check:    

 
 
(b) To check for purity we can compute  and then check if  or either of 

which would tell us that the state is mixed.  For example, in this case it is straightforward 
though somewhat tedious to show that , which tells 
us the state is mixed. 

 
There is an easier way if we know the ensemble decomposition, . 
Namely, that  is mixed if one or more of the  are linearly independent of the other. 
In our case we can confirm this by inspection, since  is confined to the  
subspace while  has a component along .
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Problem 3  
 
(a) The Hamiltonian for our 2-level system has the form 

 
 

 

 
  Starting from     we get  . 

Applying this to the elements of the 2-level density matrix, we get 
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 Now let   ,     and substitute in the above equations.  This gives us 
 

                 

 

 

      

          

    
 We set , , , drop the terms , and use , 

.  This gives us the desired result 
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(b) The Density Matrix has 2 real-valued populations and 2 complex-valued coherences, which 
suggests a total of 6 real-valued variables that must be known in order to specify .  
However, the constraints  and  allow us to express 3 of the 6 variables 
in terms of the other 3.  This leaves us with a total of 3 real-valued variables necessary to 
specify an arbitrary Density Matrix, whether it is pure or mixed. 
 

(c) Major approximations implicit in the above result: 
 

(i) The Electric Dipole Approximation  (inherent in the form of H) 
(ii) The 2-Level Approximation 
(iii) The Rotating Wave Approximation 
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Problem 4 
 
In steady state the Density Matrix Equations reduce to  
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We start by solving for the coherences in Equation (iii) 

 

    

 

 From this we get   

 
 Substituting in Equation (ii), using , and solving for , we get 
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 Sanity check:  .  With that we have the steady state solutions 
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