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Problem I 
(a) This is entirely about the spatial dependence of the field.  Thus, it suffices to show that 

  

 and thus  is transverse if and only if    
 

(b) Equation of motion:  
 
 Plug in trial solution    where    is constant and to be determined: 

 
 

  
 Cancelling out the exponential and rearranging terms gives us  

 
 

(c) We have   

Taking  as real, the complex polarizability leads to a detuning-dependent phase lag 
between  and .  To make the math a little less cumbersome, we can shift the origin of 
the time axis by an amount , so that . This allows us to once again write 

, where , and the motion of  is identical to the motion of   
(except for the phase lag). 

 
Let  and let  be the physical dipole.  Then 

 
                  

 
This is a dipole oscillating along  with frequency .  
Next, assume    

 

                 

 
 From this we see that  rotates counter-clockwise in the  

x-y plane when viewed from the +z direction, with angular 
frequency . The rotation of  lags the rotation of  by 
the phase . 
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Problem II 

(a) Let     ,          where . 

 
The phase delay induced by the optical medium at  is proportional to the real index 
of refraction, here .  There is thus no extra phase delay relative to vacuum. 

 
Extinction coefficient:  

 

      

        

 
 Transmission:  .   The cell is totally opague! 

 
(b) The gas contains subsets of atoms (velocity classes).  Consider an atom  moving with 

velocity  along the axis of wave propagation, such that the apparent resonance frequency 
is  in the lab frame.  

The probability distribution over velocity is  , where 

 

     

 
 And the corresponding probability distribution over frequencies is 
 

    , 

 

 where             

 
 Now let the plane wave frequency be .  The number density of atoms with apparent 

resonance frequency  in the lab frame is , and each velocity class 
contributes to the total complex index of refraction according to number density and 
detuning.  Thus, we have  
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 where  . 

 
Note:   is maximum when  lies at the peak of the frequency distribution , 

i. e., when . Thus, to find the minimum transmission we need to compute  
 

 

 
Noting that , we can approximate  with a -function  in the integral, 
which gives us 

 

    

 

     

 

 

  
  

Minimum Transmission:  
 
 This is still a small fraction of the light, but the cell is not completely opaque.  Besides, 

small variations in the total number density of atoms and the temperature can make a 
significant difference. 
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Problem III 
 
We model aluminum as a free electron gas, which is approximated by a collection of electron 
oscillators with .   
 

In that case the medium is transparent above the plasma frequency             

 
First we estimate N.  The number density of Aluminum atoms is 
 

 

 

Thus   . 

 
Our model suggests aluminum is reflective for wavelengths above . 
 
In practice aluminum is a good reflector above .  The exact behavior of the reflectivity 
depends on the oxidation of the metal surface, among other things.  And of course aluminum is 
not transparent below , due to its non-zero conductivity at optical frequencies.  
“Transparency” is an artifact of our electron oscillator model because we ignored losses when 
setting . 
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Problem IV 
 
(a) From the notes on the electron oscillator model:   
 
 

Thus  occurs when . 
 
(b) From the same notes, we have in general 
 

 

 
 The index of refraction is real-valued when  , i. e., in 

the large detuning limit.  In that case 
 

    

 
(c) The derivative is  
 

  

 

 

 
 Combining results from (b) and (c) we get 
 

    

 

     

 

 Now  
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