OPTI 544 Solution Set 1, Spring 2024

Problem I

(a) This is entirely about the spatial dependence of the field. Thus, it suffices to show that

$$
\nabla \cdot \vec{E}(\vec{r}, t)=\nabla \cdot e^{i \vec{k} \cdot \vec{r}}=\frac{\partial}{\partial x} e^{i\left(k_{x} r_{x}\right)}+\frac{\partial}{\partial y} e^{i\left(k_{y}, r\right)}+\frac{\partial}{\partial y} e^{i\left(k_{z}, \vec{l}\right)}=i \vec{k} \cdot e^{i \vec{k} \cdot \vec{r}}
$$

and thus $\vec{E}(\vec{r}, t)=\hat{\varepsilon} E_{0} e^{-i(\omega t-\vec{k} \cdot \overrightarrow{)}}$ is transverse if and only if $\vec{k} \cdot \hat{\varepsilon}=0$
(b) Equation of motion: $\frac{d^{2}}{d t^{2}} \mathbf{x}+2 \beta \frac{d}{d t} \mathbf{x}+\omega_{0}^{2} \mathbf{x}=\frac{e}{m} \vec{\varepsilon} E_{0} e^{-i(\omega t-k)}$

Plug in trial solution $\quad \mathbf{x}(t)=\vec{a} e^{-i(u t-k)}$ where \vec{a} is constant and to be determined:

$$
\left[\frac{d^{2}}{d t^{2}}+2 \beta \frac{d}{d t}+\omega_{0}^{2}\right] \vec{a} e^{-i(\omega t-k)}=\left[-\omega^{2}-2 i \beta \omega+\omega_{0}^{2}\right] \vec{a} e^{-i(\omega t-k)}=\frac{e}{m} \vec{\varepsilon} E_{0} e^{-i(\omega t-k)}
$$

Cancelling out the exponential and rearranging terms gives us

$$
\left[\omega_{0}^{2}-\omega^{2}-2 i \beta \omega\right] \vec{a}=\frac{e}{m} \vec{\varepsilon} E_{0} \Rightarrow \vec{a}=\vec{\varepsilon} \frac{(e / m) E_{0}}{\omega_{0}^{2}-\omega^{2}-2 i \beta \omega}
$$

(c) We have $\quad \mathbf{p}=\alpha \mathbf{E}=\alpha \vec{\varepsilon} E_{0} e^{-i(i \theta t-k)}=|\alpha| e^{i \phi} \vec{\varepsilon} E_{0} e^{-i(\omega t-k)}$

Taking E_{0} as real, the complex polarizability leads to a detuning-dependent phase lag between \mathbf{p} and $\vec{\varepsilon}$. To make the math a little less cumbersome, we can shift the origin of the time axis by an amount δt, so that $e^{i \phi} e^{-i \omega \delta t}=1$. This allows us to once again write $\mathbf{p}=|\alpha| \vec{\varepsilon} E_{0} e^{-i(\omega t-k)}$, where $\mathbf{p} \| \vec{\varepsilon}$, and the motion of \mathbf{p} is identical to the motion of $\vec{\varepsilon}$ (except for the phase lag).

Let $\vec{\varepsilon}=\vec{\varepsilon}_{x}$ and let \mathbf{p}_{R} be the physical dipole. Then

$$
\mathbf{p}_{R}=\operatorname{Re}[\mathbf{p}] \propto \operatorname{Re}\left[\vec{\varepsilon}_{x} e^{-i(\omega t-k r}\right]=\vec{\varepsilon}_{x} \cos (\omega t-k z)
$$

This is a dipole oscillating along $\vec{\varepsilon}_{x}$ with frequency ω. Next, assume

$$
\begin{aligned}
\vec{\varepsilon}=\vec{\varepsilon}_{+} \Rightarrow \mathbf{p}_{R}= & -\frac{\lambda_{2}}{2} \operatorname{Re}\left[\vec{\varepsilon}_{e} e^{-i(\omega t-k z)}+i \vec{\varepsilon}_{y} e^{-i(\omega t-k z}\right] \\
& \propto \vec{\varepsilon}_{x} \cos (\omega t-k z)+\vec{\varepsilon}_{y} \sin (\omega t-k z)
\end{aligned}
$$

From this we see that \mathbf{p}_{R} rotates counter-clockwise in the $x-y$ plane when viewed from the $+z$ direction, with angular frequency ω. The rotation of \mathbf{p}_{R} lags the rotation of \mathbf{E} by the phase ϕ.

Problem II

(a) Let

$$
\left\{\begin{array}{l}
n_{R}=1+\frac{N e^{2}}{4 \varepsilon_{0} m \omega} \frac{\Delta}{\Delta^{2}+\beta^{2}} \\
n_{I}=\frac{N e^{2}}{4 \varepsilon_{0} m \omega} \frac{\beta}{\Delta^{2}+\beta^{2}}
\end{array}, \quad \text { where } \omega_{0}-\omega\right.
$$

The phase delay induced by the optical medium at $\Delta=0$ is proportional to the real index of refraction, here $n_{R}=1$. There is thus no extra phase delay relative to vacuum.

Extinction coefficient:

$$
\begin{aligned}
a=\frac{2 \omega}{c} & n_{I}=\frac{N e^{2}}{2 \varepsilon_{0} m \beta c} \\
& =\frac{10^{16} \mathrm{~m}^{-3}\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}}{2 \times 8.85 \times 10^{-12} \frac{F}{m} \times 9.11 \times 10^{-31} \mathrm{~kg} \times 1.5 \times 10^{7} \mathrm{~s}^{-1} \times 3 \times 10^{8} \mathrm{~ms}^{-1}}=3536.9 \mathrm{~m}^{-1}
\end{aligned}
$$

Transmission: $\quad T=e^{-a l}=e^{-0.05 m \times 3536.9 m^{-1}}=1.57 \times 10^{-77}$. The cell is totally opague!
(b) The gas contains subsets of atoms (velocity classes). Consider an atom moving with velocity v along the axis of wave propagation, such that the apparent resonance frequency is $\omega=\omega_{0}+k v$ in the lab frame.

The probability distribution over velocity is $P(v)=\frac{1}{\sqrt{2 \pi \sigma_{v}^{2}}} e^{-v^{2} / 2 \sigma_{v}^{2}}$, where

$$
\sigma_{v}=\sqrt{\frac{k_{B} T}{M}}=\sqrt{\frac{1.38 \times 10^{-23} \frac{\mathrm{~J}}{K} \times 300 \mathrm{~K}}{2.21 \times 10^{-25} \mathrm{~kg}}}=136 \mathrm{~ms}^{-1}
$$

And the corresponding probability distribution over frequencies is

$$
P(\omega)=P\left(v=\frac{\omega-\omega_{0}}{k}\right)=\frac{1}{\sqrt{2 \pi \sigma_{\omega}^{2}}} e^{-\omega^{2} / 2 \sigma_{\omega}^{2}},
$$

where

$$
\sigma_{\omega}=\frac{2 \pi}{\lambda} \sigma_{v}=\frac{2 \pi}{894 \times 10^{-9} m} \times 136 \mathrm{~ms}^{-1}=9.622 \times 10^{8} s^{-1}=2 \pi \times 153.1 \mathrm{MHz}
$$

Now let the plane wave frequency be ω_{L}. The number density of atoms with apparent resonance frequency ω in the lab frame is $N(\omega)=N \times P(\omega)$, and each velocity class contributes to the total complex index of refraction according to number density and detuning. Thus, we have

$$
a\left(\omega_{L}\right)=\int_{-\infty}^{\infty} P(\omega) a\left(\omega-\omega_{L}\right) d \omega
$$

where

$$
a\left(\omega-\omega_{L}\right)=\frac{N e^{2}}{2 \varepsilon_{0} m c} \frac{\beta}{\left(\omega-\omega_{L}\right)^{2}+\beta^{2}}
$$

Note: $\quad a\left(\omega_{L}\right)$ is maximum when ω_{L} lies at the peak of the frequency distribution $P(\omega)$, i. e., when $\omega_{L}=\omega_{0}$. Thus, to find the minimum transmission we need to compute

$$
a\left(\omega_{0}\right)=\int_{-\infty}^{\infty} P(\omega) a\left(\omega-\omega_{0}\right) d \omega
$$

Noting that $\beta \ll \sigma_{\omega}$, we can approximate $a\left(\omega-\omega_{0}\right)$ with a δ-function in the integral, which gives us

$$
\begin{aligned}
a\left(\omega_{0}\right)= & \frac{1}{\sqrt{2 \pi \sigma_{\omega}^{2}}} \frac{N e^{2}}{2 \varepsilon_{0} m c} \int_{-\infty}^{\infty} e^{-\left(\omega_{0}-\omega\right)^{2} / 2 \sigma_{\omega}^{2}} \frac{\beta}{\left(\omega-\omega_{0}\right)^{2}+\beta^{2}} d \omega \\
& =\frac{1}{\sqrt{2 \pi \sigma_{\omega}^{2}}} \frac{N e^{2}}{2 \varepsilon_{0} m c} \int_{-\infty}^{\infty} e^{-\left(\omega_{0}-\omega\right)^{2} / 2 \sigma_{\omega}^{2}} \pi \delta\left(\omega-\omega_{0}\right) d \omega \\
& =\frac{1}{\sqrt{2 \pi \sigma_{\omega}^{2}}} \frac{N e^{2} \pi}{2 \varepsilon_{0} m c}=69.10 m^{-1}
\end{aligned}
$$

Minimum Transmission: $\quad T=e^{-a\left(\omega_{0}\right) l}=0.031 \sim 3 \%$

This is still a small fraction of the light, but the cell is not completely opaque. Besides, small variations in the total number density of atoms and the temperature can make a significant difference.

Problem III

We model aluminum as a free electron gas, which is approximated by a collection of electron oscillators with $\omega_{0} \rightarrow 0$.

In that case the medium is transparent above the plasma frequency $\quad \omega_{P}=\sqrt{\frac{N e^{2}}{\varepsilon_{0} m}}$

First we estimate N. The number density of Aluminum atoms is

$$
N_{A l}=\frac{2700 \mathrm{~kg} \mathrm{~m}^{-3}}{4.48 \times 10^{-26} \mathrm{~kg}}=6.03 \times 10^{28} \mathrm{~m}^{-3} \Rightarrow N=3 N_{A l}=1.81 \times 10^{29} \mathrm{~m}^{-3}
$$

Thus

$$
\omega_{P}=2.40 \times 10^{16} s^{-1} \Rightarrow \lambda_{P}=\frac{2 \pi c}{\omega_{P}}=78.53 \mathrm{~nm} .
$$

Our model suggests aluminum is reflective for wavelengths above λ_{P}.
In practice aluminum is a good reflector above 200 nm . The exact behavior of the reflectivity depends on the oxidation of the metal surface, among other things. And of course aluminum is not transparent below λ_{P}, due to its non-zero conductivity at optical frequencies.
"Transparency" is an artifact of our electron oscillator model because we ignored losses when setting $\beta \sim 0$.

Problem IV

(a) From the notes on the electron oscillator model:

Thus $n_{R}>1$ occurs when $\omega<\omega_{0}$.
(b) From the same notes, we have in general

$$
n(\omega)^{2}=1+\frac{N e^{2}}{m \varepsilon_{0}} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)+2 i \beta \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}
$$

The index of refraction is real-valued when $|\beta \omega| \ll\left|\omega_{0}^{2}-\omega^{2}\right|=\left|\left(\omega_{0}+\omega\right)\left(\omega_{0}-\omega\right)\right|$, i. e., in the large detuning limit. In that case

$$
n(\omega)^{2}=n_{R}(\omega)^{2}=1+\frac{N e^{2}}{m \varepsilon_{0}} \frac{1}{\omega_{0}^{2}-\omega^{2}}
$$

(c) The derivative is

$$
\begin{aligned}
\frac{d n_{R}}{d \omega}= & \frac{d}{d \omega}\left(1+\frac{N e^{2}}{m \varepsilon_{0}} \frac{1}{\omega_{0}^{2}-\omega^{2}}\right)^{1 / 2}=\frac{1}{2}\left(1+\frac{N e^{2}}{m \varepsilon_{0}} \frac{1}{\omega_{0}^{2}-\omega^{2}}\right)^{-1 / 2} \times \frac{N e^{2}}{m \varepsilon_{0}} \frac{2 \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}} \\
& \Rightarrow n_{R}(\omega) \frac{d n_{R}}{d \omega}=\frac{N e^{2}}{m \varepsilon_{0}} \frac{\omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}
\end{aligned}
$$

Combining results from (b) and (c) we get

$$
\begin{gathered}
\kappa=\frac{n_{R}(\omega)}{n_{R}(\omega)^{2}-1} \frac{d n_{R}}{d \omega}=\frac{\omega /\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}{1 /\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}=\frac{\omega}{\omega_{0}^{2}-\omega^{2}} \\
\Rightarrow \kappa \omega_{0}^{2}-\kappa \omega^{2}=\omega \Rightarrow \omega_{0}=\sqrt{\frac{\omega(1+\kappa \omega)}{\kappa}}
\end{gathered}
$$

Now $\quad \kappa=\frac{1.458}{1.458^{2}-1} \times 6.36 \times 10^{-18} S=8.237^{-18} S$

Then

$$
\omega_{0}=\sqrt{\frac{3.14 \times 10^{15} S^{-1}\left(1+8.237 \times 10^{-18} S \times 3.14 \times 10^{15} S^{-1}\right)}{8.237 \times 10^{-18} S}}=1.978 \times 10^{16} S^{-1}
$$

and

$$
\lambda_{0}=\frac{2 \pi c}{\omega_{0}}=95.3 \mathrm{~nm}
$$

