

Complex polarizability:

$$\vec{r} = e\vec{x} = e\vec{a}e^{-i(\omega t - k\theta)} \equiv \alpha(\omega)\vec{z}E_0e^{-i(\omega t - k\theta)}$$
$$\alpha(\omega) = \frac{e^{2/m}}{\omega_0^2 - \omega^2 - 2i\beta\omega} = \frac{e^2}{m}\frac{\omega_0^2 - \omega^2 + 2i\beta\omega}{(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2}$$

Easy to show that if $\vec{E}(\vec{R},t) = \vec{z}E_{e}e^{-i(\omega t - kz)}$ and $\vec{P} = N\vec{r} = N\alpha(\omega)\vec{E}_{e}e^{-i(\omega t - kz)}$

then the wave equation

$$\nabla^2 \vec{E} - \frac{1}{c^1} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\mathcal{E}_{c^2}} \frac{\partial^2}{\partial t^2} \vec{p}$$

takes the form

 $\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \hat{\mathbf{z}} \mathbf{E}_0 e^{-i(\omega t - k \cdot t)} = \frac{1}{\varepsilon_0} e^{-i(\omega t - k \cdot t)}$

and thus

$$k^{2} = \frac{\omega^{2}}{c^{2}} \left(1 + \frac{N \alpha(\omega)}{\varepsilon_{o}} \right)$$

We define the complex index of refraction

$$K^{2} = \frac{\omega^{2}}{c^{2}} \left[1 + \frac{N \kappa(\omega)}{\varepsilon_{0}} \right] = \frac{\omega^{2}}{c^{2}} N(\omega)^{2}$$

Easy to show that if $\vec{E}(\vec{R},t) = \vec{z}E_{e}e^{-i(\omega t - kz)}$ and $\vec{P} = N\vec{r} = N\alpha(\omega)\vec{z}E_{e}e^{-i(\omega t - kz)}$

then the wave equation

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\varepsilon_0 c^2} \frac{\partial^2}{\partial t^2} \vec{\beta}$$

takes the form

$$\left(\nabla^{2} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \hat{\boldsymbol{\varepsilon}} \boldsymbol{\varepsilon}_{0} \boldsymbol{\varepsilon}^{-i(\omega t - k \cdot t)} = \frac{1}{\varepsilon_{0} c^{2}} \frac{\partial^{2}}{\partial t^{2}} \hat{\boldsymbol{\varepsilon}} \boldsymbol{\varepsilon}_{0} \boldsymbol{\varepsilon}^{-i(\omega t - k \cdot t)}$$

and thus

 $k^{2} = \frac{\omega^{2}}{c^{2}} \left(1 + \frac{N \alpha(\omega)}{\varepsilon_{o}} \right)$

We define the complex index of refraction

$$K^{2} = \frac{\omega^{2}}{c^{2}} \left[1 + \frac{N \kappa(\omega)}{\varepsilon_{o}} \right] = \frac{\omega^{2}}{c^{2}} N(\omega)^{2}$$

Complex Index of Refraction – Physical discussion

Let
$$n(\omega) = n_{R}(\omega) + i n_{i}(\omega)$$

Plane wave propagation
$$k = n(\omega)^{\omega/c}$$

 $\vec{E}(z,t) = \vec{z} E_{o} e^{-i(\omega t - kz)}$
 $= \vec{z} E_{o} e^{-i(\omega t - [n(\omega)\omega/c]z)}$
 $= \vec{z} E_{o} e^{-n;(\omega)\omega z/c} e^{-i\omega[t - n_{R}(\omega)z/c]}$

We can now identify

$$\frac{c}{\omega_{n_{i}}(\omega)} \quad \longleftarrow \quad \text{attenuation length}$$

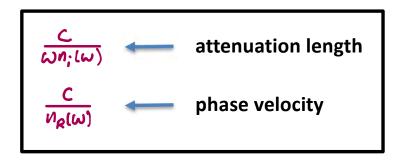
$$\frac{c}{v_{R}(\omega)} \quad \longleftarrow \quad \text{phase velocity}$$

Complex Index of Refraction – Physical discussion

Let $n(\omega) = n_{R}(\omega) + i n_{i}(\omega)$

Plane wave propagation $k = n(\omega)^{\omega/c}$ $\vec{E}(\xi,t) = \vec{\epsilon} E_{\sigma} e^{-i(\omega t - k t)}$ $= \vec{\epsilon} E_{\sigma} e^{-i(\omega t - [n(\omega)\omega/c]t)}$ $= \vec{\epsilon} E_{\sigma} e^{-n;(\omega)\omega t/c} e^{-i\omega(t - n_{R}(\omega)t/c)}$

We can now identify



Absorption

The intensity of a plane wave field \mathbf{E} is

 $I_{\omega}(2) = \frac{1}{2} n_{\varrho}(\omega) C \mathcal{E}_{o} [E(C, 2)]^{2} = I_{o}(0) e^{-2n_{i}(\omega) \omega 2/c}$ $\equiv T_{o} e^{-\beta(\omega) 2}$

where the absorption coefficient is

$$A(\omega) = 2n_{T}(\omega)^{\omega} c = \frac{2\omega}{c} \operatorname{Im}\left[\left(1 + \frac{N \times (\omega)}{\varepsilon_{o}}\right)^{t/2}\right]$$

Possibility of gain?

Absorption and Dispersion in Gases Approximations: $[\omega_{\rho}-\omega] \ll \omega_{\rho}, \omega$ near resonance weakly polarizable In(w)|~1 $\omega^2 - \omega^2 = (\omega_0 + \omega)(\omega_0 - \omega) \approx 2\omega(\omega_0 - \omega)$ Let $\alpha(\omega) = \frac{e^{2}/m}{\omega_{o}^{2} - \omega^{2} - 2i\beta\omega} = \frac{e^{2}/2m\omega}{\omega_{o} - \omega - i\beta}$ $=\frac{e^{2}}{2m\omega}\frac{\omega_{0}-\omega+i\beta}{(\omega_{1}-\omega)^{2}+\beta^{2}}$

Furthermore

$$n(\omega)^2 = 1 + \frac{N\alpha(\omega)}{\varepsilon_0} = 1 + \varepsilon_0 \cdot \varepsilon \ll 1$$

Expand to 1st order $(1+\mathcal{E})^{\frac{1}{2}} \approx 1 + \frac{\varepsilon}{2}$

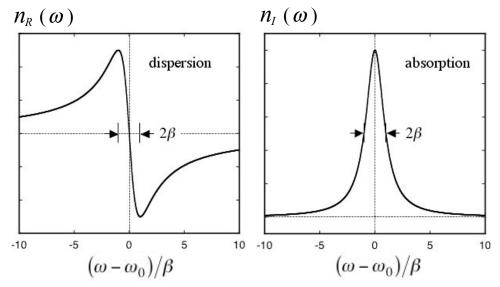
Putting it together

$$n_{R}(\omega) = 1 + \frac{Ne^{2}}{4\epsilon_{o}} \frac{\omega_{o} - \omega}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$

dispersive line shape
$$N_{T}(\omega) = \frac{Ne^{2}}{4\epsilon_{o}} \frac{\beta}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$

Lorentzian line shape

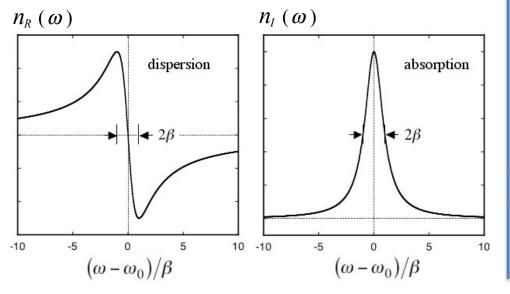
General behavior:

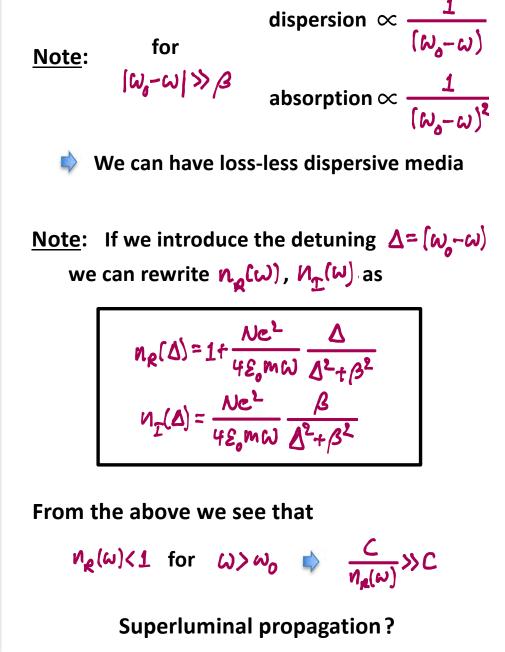


4

Putting it together $n_{R}(\omega) = 1 + \frac{Ne^{2}}{4\epsilon_{o}} \frac{\omega_{o} - \omega}{(\omega_{o} - \omega)^{2} + \beta^{2}}$ dispersive line shape $N_{T}(\omega) = \frac{Ne^{2}}{4\epsilon_{o}} \frac{\beta}{(\omega_{o} - \omega)^{2} + \beta^{2}}$ Lorentzian line shape

General behavior:





Free Electrons

Consider the limit $\omega \gg \omega_0$

effectively unbound electrons

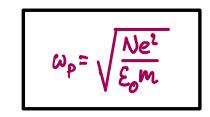
This is a reasonable model of plasmas & metals

In this limit we have

$$\alpha(\omega) = \frac{e^{2}/m}{\omega_{o}^{2} - \omega^{2} - 2i\beta\omega} \approx -\frac{e^{2}}{m\omega} \implies$$

$$n(\omega) = \sqrt{1 + \frac{N\alpha(\omega)}{\varepsilon_{o}}} \approx \sqrt{1 - \frac{Ne^{2}}{\varepsilon_{o}m\omega^{2}}} \equiv \sqrt{1 - \frac{\omega_{p}^{2}}{\omega^{2}}}$$

We introduce the Plasma Frequency



ທແພ) purely imaginary - but no loss!

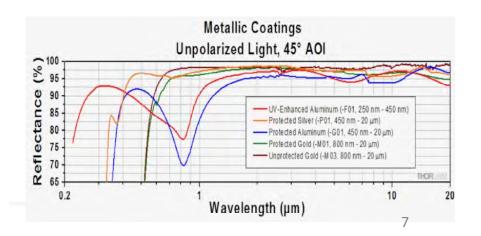
We now have

$$\vec{E}(2,t) = \vec{E}E_{0}e^{-i\omega[t-n(\omega)2/c]}$$
$$= \vec{E}E_{0}e^{-i\omega t}e^{i(2/c)\sqrt{\omega^{2}-\omega_{p}^{2}}}$$
$$= \vec{E}E_{0}e^{-i\omega t}e^{-b(\omega)2}$$

where

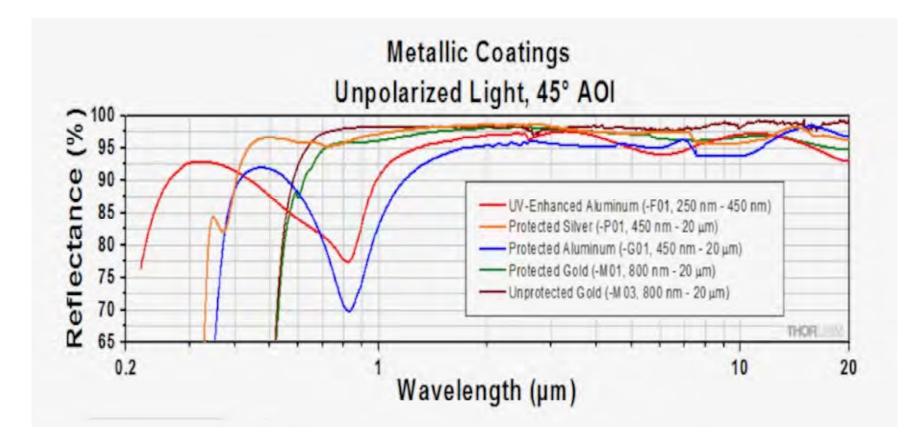
 $b(\omega) = -\frac{i}{c}\sqrt{\omega^2 - \omega_p^2}$

Reflection at surface $\sim 1/b(\omega)$ penetration depth



Light-Matter Interaction, Free Electrons

Examples of this kind of medium includes plasmas, and metals such as aluminum, silver and gold which are known to be excellent mirrors for visible and IR radiation.



Completed:

- Fully classical description of fields & Atoms

Next Step:

- Semiclassical description

Classical field Quantum atoms

- **Needed:** Quantum theory of atomic response analogous to classical $\vec{r} = \alpha(\omega) \vec{E}$
- Note: In QM the dipole is an Observable Observable = Hermitian operator Classical Field = C-valued vector

Cannot plug into Wave Eq. for classical field!

Wave Equation w/classical field & atoms

$$\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 C^2} \frac{\partial^2}{\partial t^2} \vec{P}, \quad \vec{p} = N \vec{p}$$

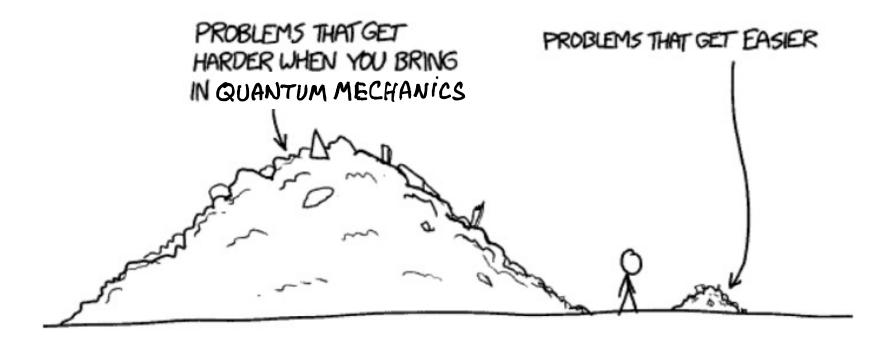
How do we deal with this mis-match?

Repeated measurements of ret

Quantum fluctuations $\vec{p}(t) = \langle \vec{p}(t) \rangle + \Delta p(t)$ where $\langle \vec{p}(t) \rangle = \langle q(t) | \hat{\vec{p}} | q(t) \rangle$ mean fluctuations

Note: Given (キャンシ) and E the mean くずにと) follows from the Schrödinger Eq., radiates <u>coherently</u> like classical ずにと)

(is a Real-valued vector (more later) we can plug it into the Wave Eq.



Source: xkcd.com

Completed:

- Fully classical description of fields & Atoms

Next Step:

- Semiclassical description

Classical field Quantum atoms

- **Needed:** Quantum theory of atomic response analogous to classical $\vec{r} = \alpha(\omega) \vec{E}$
- Note: In QM the dipole is an Observable Observable = Hermitian operator Classical Field = C-valued vector

Cannot plug into Wave Eq. for classical field!

Wave Equation w/classical field & atoms

$$\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 C^2} \frac{\partial^2}{\partial t^2} \vec{P}, \quad \vec{p} = N \vec{p}$$

How do we solve the mismatch?

Repeated measurements of $\vec{n}(t)$

Quantum fluctuations $\vec{p}(t) = \langle \vec{p}(t) \rangle + \Delta p(t)$ where $\langle \vec{p}(t) \rangle = \langle q(t) | \hat{\vec{p}} | q(t) \rangle$ mean fluctuations

Note: Given $|\psi(t \ge 0)\rangle$ and \vec{E} , the mean $\langle \vec{\mu}(t)\rangle$ follows from the Schrödinger Eq., radiates <u>coherently</u> like classical $\vec{\mu}(t)$

(is a Real-valued vector (more later) we can plug it into the Wave Eq.

Wave Equation w/classical field & atoms

 $\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 C^2} \frac{\partial^2}{\partial t^2} \vec{P}, \quad \vec{p} = N \vec{p}$

How do we solve the mis-match?

Repeated measurements of $\vec{\eta}(t)$

Quantum fluctuations $\vec{p}(t) = \langle \vec{p}(t) \rangle + \Delta p(t)$ where $\langle \vec{p}(t) \rangle = \langle q(t) | \hat{\vec{p}} | q(t) \rangle$ mean fluctuations

Note: Given $|\psi(t=0)\rangle$ and \vec{E} the mean $\langle \vec{\mu}(t)\rangle$ follows from the Schrödinger Eq., radiates <u>coherently</u> like classical $\vec{\mu}(t)$

(is a Real-valued vector (more later) we can plug it into the Wave Eq. Wave Equation w/classical field & atoms

$$\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 C^2} \frac{\partial^2}{\partial t^2} \vec{P}, \quad \vec{p} = N(\vec{p})$$

Note: - The Equations look very similar

- Polarizability, index of refraction, etc will be *very different* in some regimes
- Notably, the model is no longer linear in Ê and will lead to phenomena like saturation and wave mixing
- A (A) represents quantum fluctuations driven by the empty modes of the EM field, a process also responsible for spontaneous decay.
- **Note:** Do not identify $\langle \vec{n} \rangle$ and $\Delta \vec{n}$ with Stimulated and spontaneous emission. Those labels are not meaningful here.

Wave Eq. w/classical field & quantum atoms

 $\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 C^2} \frac{\partial^2}{\partial t^2} \vec{p}, \quad \vec{p} = N(\vec{p})$

Note: - The Equations look very similar

- Polarizability, index of refraction, etc will be *very different* in some regimes
- Notably, the model is no longer linear in *Ê* and will lead to phenomena like saturation and wave mixing
- A (c) represents quantum fluctuations driven by the empty modes of the EM field, a process also responsible for spontaneous decay.
- Note: Do not identify $\langle \vec{n} \rangle$ and $\Delta \vec{n}$ with Stimulated and spontaneous emission. Those labels are not meaningful here.

Atom-field interaction

Hamiltonian:

$$H = H_{a} + V_{ext}(\hat{R}, t)$$

Ha: time-independent atomic Hamiltonian

Vext: time-dependent driving term, non necessarily a perturbation

Question: Time evolution of the atomic system? Is there a steady state?

Schrödinger Eq.:

Expand in basis $[(\varphi_n)]$ of eigenstates of H_a $|\psi(t)\rangle = \sum_n a_n(t) [\varphi_n\rangle, \quad H_a |\varphi_n\rangle = E_n |\varphi_n\rangle$

Atom-field interaction

Hamiltonian:

$$H = H_{a} + V_{ext}(\vec{R},t)$$

- Ha: time-independent atomic Hamiltonian
- Vert: time-dependent driving term, non necessarily a perturbation

Question: Time evolution of the atomic system? Is there a steady state?

Schrödinger Eq.:

$$i\hbar \frac{\partial}{\partial t} |q(t)\rangle = H |q(t)\rangle$$

Expand in basis $[(\varphi_n)]$ of eigenstates of H_a $|\psi(t)\rangle = \sum_n a_n(t) [\varphi_n\rangle, \quad H_a |\varphi_n\rangle = E_n |\varphi_n\rangle$ Plug into S.E. 📦

$$in \sum a_n(t) |q_n\rangle = \sum a_n(t) [E_n + V_{ext}] |q_n\rangle$$

Take scalar product w/ $|q_{\rm M}
angle$ on both sides i

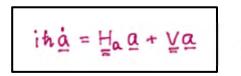
On vector-matrix form this can be written

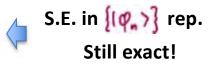
Plug into S.E. 📦

$$in \sum a_n(t)|q_n\rangle = \sum a_n(t) \left[E_n + V_{ext}\right]|q_n\rangle$$

Take scalar product w/ Iqm > on both sides 🔿

On vector-matrix form this can be written





- Perturbation Theory (OK for short times or "weak" driving fields)
- Numerical integration of the S. E.
- Few-level approximations to simplify and obtain analytical solutions outside the perturbative regime

General problem: No analytical solution!

Atom-Light Interaction: 2-Level Approximation

General observation:

- Atoms and molecules often behave as if they have a single, dominant transition frequency
- We expect this when the freq. of the driving is resonant with one transition $|q_n\rangle \rightarrow |q_m\rangle$ and far off resonance with all others.

Interaction Vext = - 1. E(t)

State vector

Schröd. eq.

Interaction

State space $Dim(\mathcal{E}) = 2$, $\{11, 12\}$ tiw_{g} $(24(4)) = a_1(4) (1) + a_2(4) (2)$ $i \pounds \dot{a}_{1} = E_{1} a_{1} + V_{11} a_{1} + V_{12} a_{2}$ $i \pounds \dot{a}_{2} = E_{2} a_{2} + V_{21} a_{1} + V_{22} a_{2}$ $V_{12}(t) = -\vec{\eta}_{12} \cdot \frac{1}{2} (\pounds E_{0} e^{-i\omega t} + c.c.)$ $V_{21}(t) = -\vec{\eta}_{21} - \frac{1}{2} (\pounds E_{0} e^{-i\omega t} + c.c.)$ **Parity selection rule**

Definition: $\vec{r} \rightarrow -\vec{r}$ is a reflection through the origin

Atomic Hamiltonian $H \approx \frac{1}{r} \Rightarrow H(\vec{r}) = H(-\vec{r})$			
📫 Eig	genstates $\varphi(\vec{r}) = \pm \varphi(-\vec{r}) = \varphi($	-[-7])	
	"+" for even parity two ret "-" for odd parity equals th	flections ne identity	
The dipole 윢 is a vector operator 📦 transforms like a vector when 🕅 r			
Thus $\vec{\eta}(\vec{r}) = e^{\vec{r}} = -\vec{\eta}(-\vec{r})$ and			
$\vec{p}_{nm} = \int d^{3}r q_{n}^{*}(\vec{r}) \vec{p} q_{m}(\vec{r}) \neq 0$ only when			
Q and Q have opposite parity			
Parity ru		No dipole moment in energy eigenstate !	
	$\vec{\eta}_{12} = \langle 1 \hat{\eta} 2 \rangle, \vec{\eta}_{21} = \vec{\eta}_{12}^{*}$ $\vec{\eta}_{11} = \vec{\eta}_{22} = 0 \implies V_{11} = V_{22} = 0$		
	m= n= = 0 ⇒ V = = 0		