Hierarchy of Sophistication:

- Classical Classical light, classical matter

- Semiclassical Classical light, quantum matter

- Quantum Quantum light, quantum matter

Possible attitudes:

- Purist Most complete description possible

- Minimalist Quantum only when necessary

- Pragmatic Quantum or classical, based on

what is simplest and still works

OPTI 544: All of the above in turn

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Electromagnetic Field Atom/Molecule/Solid

Motivation: We will

- Develop Concepts α(ω), η, χ
- Develop Intuition
- Classical is often adequate, sometimes accurate
- A Quantum Theory has classical limits
 Identify/understand regime of validity
- The Classical description is a useful starting point for Nonlinear and Quantum Optics

The Electromagnetic Field: Basic Eqs. in SI Units

Maxwell's eqs.

(no free charges, currents | dielectrics)

(i)
$$\nabla \cdot \vec{D} = Q = 0$$

(i) $\nabla \cdot \vec{D} = g = 0$ \vec{D} : Dielectric displacement

(ii) $\nabla \cdot \vec{B} = 0$ \vec{g} : Magnetic induction

(iii)
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 \vec{E} : Electric field

(iv)
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial E} + \vec{J}$$
 \vec{H} : Magnetic field

Material Response:

$$(v) \vec{B} = \mu_0 \vec{H} + \vec{M}$$

(vi)
$$\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$$

(v) $\vec{B} = \mu_0 \vec{H} + \vec{M}$
Non-magnetic $\vec{D} = \vec{M} = \vec{O}$ (vi) $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$
Info about response in dipole moment density (polarization density)

We need equations that describe:

- the behavior of \vec{E} for given $\vec{\rho}$
- the medium response $\vec{\rho}$ for given $\vec{\epsilon}$

Wave Equation:

Take curl of (iii), then use (iv)

$$\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Next, use the identity

$$D \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$$

to obtain
$$\nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E} = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Finally, let
$$\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$$
, use $\mathcal{E}_0 M_0 = \frac{1}{c^2}$,

and rearrange to obtain

$$\nabla^{2}\vec{E} - \nabla(\nabla \cdot \vec{E}) - \frac{1}{c^{2}} \frac{\partial^{2}\vec{E}}{\partial t^{2}} = \frac{1}{\xi_{c}c^{2}} \frac{\partial^{2}\vec{p}}{\partial t^{2}}$$

This is the Wave Equation, still exact in this form

Transverse Fields

Definition: a field for which ∇⋅ € = 0 is Transverse

Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t) e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse.

The physical field is $\text{Re}\left[\vec{E}(\vec{r},t)\right]$

For transverse fields the wave equation simplifies to

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial \ell^2} \vec{E} = \frac{1}{\mathcal{E}_{c} c^2} \frac{\partial^2}{\partial \ell^2} \vec{\beta}$$

This version of the wave equation can be a poor approximation in non-isotropic media!

Isotropic Media

Absent a preferred direction, the induced produced must be parallel to the driving field

Regime of <u>Linear response</u>, steady state:

$$\vec{\mathcal{D}}(t) = \mathcal{E}_o \vec{\mathcal{E}}(t) + \vec{\mathcal{P}}(t)$$
 where $\vec{\mathcal{P}}(t) = \mathcal{R} \cdot \vec{\mathcal{E}}(t)$
Constant, same units as \mathcal{E}_o , but $\mathcal{R} \gg \mathcal{E}_o = \vec{\mathcal{P}}(t)$

Regime of <u>Linear response</u>, transient case:

$$\vec{D}(t) = \mathcal{E}_0 \vec{E}(t) + \int_{-\infty}^{t} dt' R(t - t') \vec{E}(t')$$

where the response function R(t-t') is a scalar and we have R(t) = 0 for t < 0

Take divergence on both sides and use M.E. (1)

$$\nabla \cdot \vec{D}(t) = \mathcal{E}_{0} \nabla \cdot \vec{E}(t) + \int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t') = 0$$

and
$$\nabla \cdot \vec{E}(t) = -\int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t')$$
 for all t

It follows that $\nabla \cdot \vec{E}(t) = 0$ for all t,

OR
$$R(T) = -2\delta(T)$$

Regime of Linear response, steady state:

$$\vec{D}(t) = \mathcal{E}_0 \vec{E}(t) + \vec{P}(t)$$
 where $\vec{P}(t) = R \cdot \vec{E}(t)$
Constant, same units as \mathcal{E}_0 , but $R \gg \mathcal{E}_0$

Regime of <u>Linear response</u>, transient case:

$$\vec{D}(t) = \mathcal{E}_{\delta} \vec{E}(t) + \int_{-\infty}^{t} dt' R(t - t') \vec{E}(t')$$

where the response function R(t-t') is a scalar and we have R(T) = 0 for T < 0

Take divergence on both sides and use M.E. (1)

$$\nabla \cdot \vec{D}(t) = \mathcal{E}_{0} \nabla \cdot \vec{E}(t) + \int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t') = 0$$

and $\nabla \cdot \vec{E}(t) = -\int_{-\infty}^{t} dt' \, \mathcal{R}(t-t') \, \nabla \cdot \vec{E}(t')$ for all t

It follows that $\nabla \cdot \vec{E}(t) = 0$ for all t,

OR
$$R(T) = -2\delta(T)$$

Note: if $R(\tau) \propto \delta(\tau)$ (instantaneous response) then

The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials.

Electric fields are transverse in linear, isotropic dielectric media

(including the vacuum)

Wave Equation in free space

$$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Note: if $R(\tau) \propto \delta(\tau)$ (instantaneous response) then

The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{L} < 0$, which only occurs in certain engineered metamaterials.

Electric fields are transverse in linear, isotropic dielectric media

(including the vacuum)

Wave Equation in free space

$$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Monochromatic trial solution $\vec{E}(\vec{r},t) = \vec{E}_{\rho}(\vec{r}) e^{-i\omega t}$

Equation for the spatial component alone:

$$\nabla^2 \vec{E}_0(\vec{r}) + |\vec{k}|^2 \vec{E}_0(\vec{r}) = 0$$
, $|\vec{k}| = \omega/c$

Plane wave solutions

Optical Cavities: Here we need to solve the wave equation subject to boundary conditions. See, e. g., Millony & Eberly for examples such as rectangular cavities, Fabryt-Perot etalons, and spherical mirror resonators.

Monochromatic trial solution $\vec{E}(\vec{r},t) = \vec{E}_{\rho}(\vec{r}) e^{-iNt}$

$$\nabla^2 \vec{E}_o(\vec{r}) e^{-i\omega t} + \frac{\omega^2}{c^2} \vec{E}_o(\vec{r}) e^{-i\omega t} = 0$$

Equation for the spatial component alone:

$$\nabla^2 \vec{E}_0(\vec{r}) + |\vec{k}|^2 \vec{E}_0(\vec{r}) = 0$$
, $|\vec{k}| = \frac{\omega}{c}$

Plane wave solutions

Optical Cavities: Here we need to solve the wave equation subject to boundary conditions. See, e. g., Millony & Eberly for examples such as rectangular cavities, Fabryt-Perot etalons, and spherical mirror resonators.

Wave Equation in Fourier Space:

In Configuration Space:

$$\nabla^2 \vec{E}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}(\vec{r},t) = \frac{1}{\varepsilon_s c^2} \frac{\partial^2}{\partial t^2} \vec{P}(\vec{r},t)$$

In Fourier Space:

$$k^2 \vec{E}(\vec{k}, \omega) - \frac{\omega^2}{c^2} \vec{E}(\vec{k}, \omega) = \frac{\omega^2}{\epsilon_0 c^2} \vec{p}(\vec{k}, \omega)$$

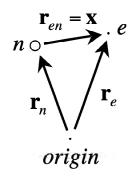
<u>Note</u>: In the Fourier domain the wave equation is purely algebraic – there are no derivatives or integrals. This becomes important later in the course when we quantize the electromagnetic field.

Theory of Atomic Response

So far, we have a model for the field. Next, we need a model of how the constituents of the medium responds to the field.

This will allow us to find the polarization density \vec{p} as function of the field \vec{E}

Classical "atom"



Simple model: nucleus + electron

Lorentz Force

Newton:

(i)
$$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e \vec{E}(\vec{r}_n, t) - \vec{F}_{en}(\vec{r}_{en}, t)$$

(ii)
$$m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e \vec{E}(\vec{r}_e,t) + \vec{F}_{en}(\vec{r}_{en},t)$$

This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion.

We define:

$$\vec{x} = \vec{r_e} = \vec{r_e} - \vec{r_n}$$
 $m = \frac{m_e}{m_e}$

$$\vec{R} = \frac{m_e \vec{r}_e + m_u \vec{r}_u}{M}$$

$$m = \frac{m_e + m_n}{m_e + m_n} \sim m_e$$

$$M = M_e + M_n \sim M_n$$

- Relative coord. M Reduced mass
- **Center-of-mass** M Total mass

Newton:

(i)
$$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e \vec{E}(\vec{r}_n, t) - \vec{F}_{en}(\vec{r}_{en}, t)$$

(ii)
$$m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e \vec{E}(\vec{r}_e, t) + \vec{F}_{en}(\vec{r}_{en}, t)$$

This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion.

We define:

$$m = \frac{m_e m_n}{m_e + m_n} \sim m_e$$

$$M = M_e + M_n \sim M_n$$

Relative coord.

M Reduced mass

Center-of-mass

Total mass

Sub into (i), (ii) and rewrite:

$$M\frac{d^{2}}{dt^{2}}\vec{R} = e\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) - \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$m\frac{d^{2}}{dt^{2}}\vec{x} = \frac{e}{2}\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) + \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$+ \vec{F}_{en}(\vec{X}) + \frac{1}{2}(m_{n} - m_{e})\frac{d^{2}}{dt^{2}}\vec{R}$$

Basic result, no approximations!

main text

Milloni & Eberly, Set R ≈ F_n , X ≈ F_{en} Throw away eq. for $\vec{\xi}$

Electric Dipole approximation

Atomic dimensions Optical Wavelength

Sub into (i), (ii) and rewrite:

$$M\frac{d^{2}}{dt^{2}}\vec{R} = e\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) - \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$m\frac{d^{2}}{dt^{2}}\vec{x} = \frac{e}{2}\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) + \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$+ \vec{F}_{en}(\vec{X}) + \frac{1}{2}(m_{n} - m_{e})\frac{d^{2}}{dt^{2}}\vec{R}$$

Basic result, no approximations!

main text

Milloni & Eberly, Set R ≈ Fn , x ≈ Fen Throw away eq. for R

Electric Dipole approximation

Atomic dimensions Optical Wavelength

EDA: the field is <u>nearly constant</u> on the scale of an atom

Good approximation: 1^{st} order expansion in \vec{x}

$$\vec{E}(\vec{R} - \frac{m_e}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) - \frac{m_e}{M}(\vec{X} \cdot \vec{V}) \vec{E}(\vec{R}(t))$$

$$\vec{E}(\vec{R} + \frac{me}{M}\vec{X}, t) \approx \vec{E}(\vec{R}, t) + \frac{me}{M}(\vec{X} \cdot \nabla) \vec{E}(\vec{R}(t))$$

$$M \frac{d^2}{dt^2} \vec{R} \approx e(\vec{X} \cdot \nabla) E(\vec{R}, t)$$
 COM

$$m_{dt^{2}}^{d}\vec{x} = e\vec{E}(\vec{R},t) + \frac{m_{n} - m_{e}}{M} e(\vec{x} \cdot \vec{V})\vec{E}(\vec{R},t) + \vec{F}_{en}(\vec{x}) \quad \text{Rel. Coord.}$$

EDA: the field is <u>nearly constant</u> on the scale of an atom

Good approximation: 1^{st} order expansion in \vec{x}

$$\vec{E}(\vec{R} - \frac{m_e}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) - \frac{m_e}{M}(\vec{X} \cdot \vec{V}) \vec{E}(\vec{R}(t))$$

$$\vec{E}(\vec{R} + \frac{me}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) + \frac{me}{M}(\vec{X} \cdot \nabla) \vec{E}(\vec{R}(t))$$

$$M \frac{d^2}{dt^2} \vec{R} \approx e(\vec{X} \cdot \nabla) E(\vec{R}, t)$$
 COM

$$\frac{Md^{2}}{dt^{2}}\vec{x} = e\vec{E}(\vec{R}_{i}t) + \frac{M_{n}-M_{e}}{M}e(\vec{x}\cdot\vec{V})\vec{E}(\vec{R}_{i}t) + \vec{F}_{n}(\vec{x})$$
Rel. Coord.

Physical Interpretation:

ポコピス: electric dipole moment of the atom

The Eqs. Of motion can then be recast as

$$M \frac{d^{2}}{dt^{2}} \vec{R} \approx (\vec{\eta} \cdot \nabla) \vec{E}(\vec{R}_{i}t) = \vec{F} = -\nabla_{R} V(\vec{x}_{i}\vec{R}_{i}t)$$

$$M \frac{d^{2}}{dt^{2}} \vec{X} = e \vec{E}(\vec{R}_{i}t) + \vec{F}_{en}(\vec{x}) = -\nabla_{x} V(\vec{x}_{i}\vec{R}_{i}t)$$

$$\text{where} \qquad V(\vec{x}_{i}\vec{r}_{i}t) = -\vec{\eta} \cdot \vec{E}(\vec{r}_{i}t)$$

electric-dipole interaction

<u>Note</u>: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature.

Physical Interpretation:

ポコピス: electric dipole moment of the atom

The Eqs. Of motion can then be recast as

$$M \frac{d^{2}}{dt^{2}} \vec{R} \approx (\vec{\eta} \cdot \nabla) \vec{E}(\vec{R}_{i}t) = \vec{F} = -\nabla_{R} V(\vec{x}_{i}\vec{R}_{i}t)$$

$$M \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E}(\vec{R}_{i}t) + \vec{F}_{en}(\vec{x}) = -\nabla_{x} V(\vec{x}_{i}\vec{R}_{i}t)$$

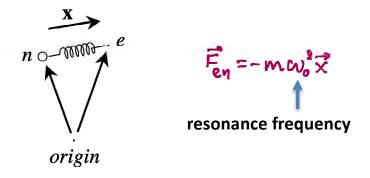
$$\text{where} \quad V(\vec{x}_{i}\vec{r}_{i}t) = -\vec{\eta} \cdot \vec{E}(\vec{r}_{i}t)$$

electric-dipole interaction

Note: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature.

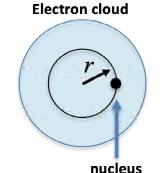
The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:



This is meant as a model of the atomic <u>response</u>, not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a point-like nucleus and a spherical electron cloud



Force from charge inside r as if entire charge was at the center

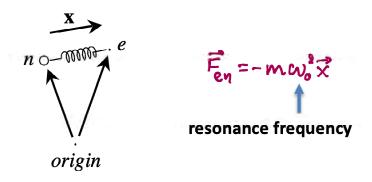
Force from charge outside r is zero

Force
$$F \propto \frac{r^3}{r^2} \propto r$$

harmonic restoring force

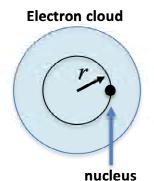
The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:



This is meant as a model of the atomic <u>response</u>, not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a point-like nucleus and a spherical electron cloud



Force from charge inside r as if entire charge was at the center

Force from charge outside r is zero

Force
$$F \propto \frac{r^3}{r^2} \propto r$$

harmonic restoring force

Now substitute $\vec{F}_{e\eta} = -m\omega_e^2 \vec{x}$ into eq. for \vec{x}

$$\frac{\partial^2}{\partial t^2} \vec{X} + W_0^2 \vec{X} = \frac{e}{m} \vec{E}(\vec{R}, t)$$

Combine with $\overrightarrow{P} = N\overrightarrow{n}$, $\overrightarrow{A} = e\overrightarrow{x}$ where N is the number density of atoms. This relates the macroscopic \overrightarrow{P} to the microscopic \overrightarrow{x}

We now have

Maxwell's Equations
The Lorentz model

Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation

End 01-16-2024