Light-Matter Interaction

Hierarchy of Sophistication:

- Classical Classical light, classical matter

- Semiclassical Classical light, quantum matter

- Quantum Quantum light, quantum matter

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Possible attitudes:

- Purist Most complete description possible
- Minimalist Quantum only when necessary

- Pragmatic Quantum or classical, based on
what is simplest and still works

Electromagnetic Field ==» Atom/Molecule/Solid

t |

OPTI 544: All of the above in turn

Motivation: We will

Develop Concepts ol(ew), v L

Develop Intuition

Classical is often adequate, sometimes accurate

A Quantum Theory has classical limits »
Identify/understand regime of validity

The Classical description is a useful starting
point for Nonlinear and Quantum Optics




Light-Matter Interaction

The Electromagnetic Field: Basic Eqgs. in Sl Units

Maxwell’s eqs.

( no free charges, currents ® dielectrics )

- -~
(i) -D = g =0 D : Dielectric displacement
(ii) V.g =0 g: Magnetic induction
(i) UxE=- o8 g: Electric field
ot
(iv) ¢xH = ?g 7 Fr’: Magnetic field

We need equations that describe:

- the behavior of E for given ©

- the medium response © for given E

Wave Equation:

Material Response:

- >

v) @ = uoH+ M | €= Non-magnetic & M =0
Info about response in
<= dipole moment density
(polarization density)

1

(vi) D = é.o-E’ + P

Take curl of (iii), then use (iv)

[an)-- alD

Ox(VxE)=-7x28 -
ot YT

Next, use the identity

Vx(V=x é): V{V’g)- VLE

to obt OLE =~
o obtain (- E) /u bt’-

5

Finally, let 5= E,E+ P, use E,/M,f-‘ —

and rearrange to obtain

9_-9 ____ aQ'E - .1 blp
VIE-O(vE) L P et a2

This is the Wave Equation, still exact in this form
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Transverse Fields

Definition: a field for which V- E 20
is Transverse

A

Example: a plane wave, E{F,é) B é[ﬁ) e'k'r ’
where EH—LL?, is transverse.
The physical field is Re [E(74)]

For transverse fields the wave equation
simplifies to

> _1 2%
E-cab’

3fl°,1,

-
ViE- 5

This version of the wave equation can be a
poor approximation in non-isotropic media!

Isotropic Media

Absent a preferred direction, the mduced P
must be parallel to the driving field E

End 01-11-2024

Begin 01-16-2024

Regime of Linear response, steady state:

- =5 - = g
O(+) = &,Elt)+ P[t) where P[t)=R-E(+)

Constant, same units as £, , but R> &,

Regime of Linear response, transient case:
- = ® ] -
By = £,E10) + [ag'ree-e) B

-0

where the response function R(£-+') is a scalar
and we have R(T)=0 for T<O

Take divergence on both sides and use M.E. (1)
- +
V-D(t) =& V.E 1)+ f ds' Rit-t) ©.EY) = 0
~o0
=D -t- =3
and ©- E@) =] de'w(t-¢)PE(¢) forall £
~d

It follows that -E(£)= 0 forall £,
OR RIT) =~ Ld[T)
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Regime of Linear response, steady state:

Dit) = £o§l£)+ Plt) where Plt) = R-E(4)

Constant, same units as £, , but R> &,

Regime of Linear response, transient case:
-> r= < ' pud
By = £,E10) + [at'ree-#) B¢

=00

where the response function R (£ -t') is a scalar
and we have R(T)=0 for T<O

Take divergence on both sides and use M.E. (1)
- +
VD)= £ VB )+ | db'Rit-4)9.E4Y = 0
~o0
- 12 -
and V- E(f):-—f dt' Rt ¢ )V-£([¢) forall £
—

It follows that - E(£)= 0 for all t,
OR RIT)=-Ld[(T)

Note: if R(T)«¢ 3(T) (instantaneous response) then

t

g,| dt’ RI%-4)EW) = & X Ete)
e t et
susceptibility

The case R([T) = -24(T) is an example of negative
susceptibility, %< 0 , which only occurs in certain
engineered metamaterials.

.

Electric fields are transverse in linear,
isotropic dielectric media

(including the vacuum)

Wave Equation in V3E - _‘1_-_'3_9: e = o
free space C D2
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Note: if R(T)« 3(T) (instantaneous response) then Monochromatic trial solution E[F.Q E(r) -iNE
t -
g,[ e RIE-1)EW) = £ X Elg)
- D -
-~ t susceptibility VQ'E,CV'JB ’“t c.'— E U‘ Ve Mt
The case R[T) = -24(T) is an example of negative Equation for the spatial component alone:
susceptibility, %< 0 , which only occurs in certain S -
engineered metamaterials. v Eo(ﬂ +%I? E,,Cﬁ =0, <l "w/C
- ~

Plane wave solutions

Electric fields are transverse in linear,
isotropic dielectric media

f::[f’bEE e'w‘ [Kl= w/e

(including the vacuum)

Optical Cavities: Here we need to solve the
wave equation subject to boundary conditions.
See, e. g., Millony & Eberly for examples such
as rectangular cavities, Fabryt-Perot etalons,
and spherical mirror resonators.

Wave Equation in ViE -
free space

p
o

1%
"a—




Light-Matter Interaction

. . . ~ D oy WE
Monochromatic trial solution E(#t)= E (F)e

e

VIE (P)e Wty 95 B (e W =
c

Equation for the spatial component alone:
VE,(? +IRPE (M =0, ¥ =%
e

Plane wave solutions

B () - E‘,'Eoemr, 1K= w/e

Optical Cavities: Here we need to solve the
wave equation subject to boundary conditions.
See, e. g., Millony & Eberly for examples such
as rectangular cavities, Fabryt-Perot etalons,
and spherical mirror resonators.

Wave Equation in Fourier Space:

In Configuration Space:

ot = 1 o

2E@+ 1—-. EB(fe) = — 2 B

VEE@H)- 5 o E(RD) i ¢)
-

In Fourier Space:
- L =
RE(R w)- L ER w) = 2 P(R)

ot I aoc

Note: In the Fourier domain the wave equation
is purely algebraic — there are no derivatives or
integrals. This becomes important later in the
course when we quantize the electromagnetic
field.
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Theory of Atomic Response

So far, we have a model for the field. Next, we

need a model of how the constituents of the
medium responds to the field.

This will allow us to find the polarization density

3 as function of the field E

Classical “atom” Simple model:

nucleus + electron
Lorentz Force

- & 5 =
r& r, F’:g_LE-F U?B)

origin ~ O if non-relativistic

Newton:
t ) -t =P o )
(i) My it = —e E(r, +)- ’-;"('ZM-L)

-

. ar - — -
(") me,dTL re,L'e} =e E(?.e .'é) t pev,(ren,il

This is a standard 2-body problem which we can
re-cast as in terms of relative and COM motion.

We define:
- Mp M
X=r =V~ m=—%""_ um
n 4 Mt M, <
D WMo Ve d M,V
R: e n'n M:m.,_m oM
M (A n n

=
X Relative coord. M Reduced mass

-
R Center-of-mass M Total mass




Light-Matter Interaction

Newton:

t e o0 -
) my s i) = e BG4 (3

€n -L)

ni

-

by
(i) me;—£ rel6)= e E(%, 4)¢ £, (T, 4]

Sub into (i), (ii) and rewrite:

This is a standard 2-body problem which we can
re-cast as in terms of relative and COM motion.

We define:
- Me M
5("-:? .—_v‘&-? m=—5"" oUm

M= ch.-r-m“ vm,

-y
X Relative coord. M  Reduced mass
-
R Center-of-mass M Total mass

Basic result, no approximations !

Milloni & Eberly,
main text

Set 6%?“" , Xt

ewn
Throw away eq. for @

Electric Dipole approximation

Atomic dimensions Optical Wavelength

(2]~ 18 & A~ 10YA4
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Sub into (i), (ii) and rewrite:

fl%'ln e,[ (5*--?“—“-?,-&)—81'2'—%‘.?,4&)]

el EE 0

+ Eé,,[x) fi"(m”' me)d‘bz 2

Basic result, no approximations !

Set R~ P X Mo
Throw away eq. for

Milloni & Eberly,
main text

Electric Dipole approximation

R

EDA: the field is nearly constant on the
scale of an atom

Good approximation: 15t order expansion in X

e

my
—
1‘5.3

ult
Eﬂ
g'r? 2|3

?C,t) x B

)f.» E(ﬂ+ +

2 WMe B o=
[;e',/,.)'-;r(x v)E(R1)
e (X v)E(dw))

o

Atomic dimensions Optical Wavelength

(R~ 14 & A~ 10%4

oAt 5
— R = .2)E coM
M o e (R 9)ER)

M~ M,
i e (% V)F"((é)

+F, (%) Rel. Coord.

d* % 2
ma(fz R=eB(@yr2—¢
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EDA: the field is nearly constant on the
scale of an atom

Good approximation: 1%t order expansion in X'

e

%,¢)x E(E4) —%’:c?. ?)E (8ry)

e (X -o)E(du))

Me
m
é(ﬁ*—% ) E(ﬂ%i—

Physical Interpretation:

,'r.‘ =eX: electric dipole moment of the atom

~-_

The Eqgs. Of motion can then be recast as

S
nX @ =0 (R 9)E@EL com
a—*‘z ~e\XVv .

mgﬁ? e BB r e e.(%-7)ER4)
+F, (¥) Rel. Coord.

d “ ..A
mmn (f-D)ELRE) = F

l‘l

-V, V(% 2+)

mo%;? =e E(¢)+ i':;,,('i) == V(% RA)

where V(X 74)=- f-E(74)

"

electric-dipole interaction

Note: The COM Eq. is the foundation for a range
of laser Atom Traps and Optical Tweezers. We will
not explore this further in OPTI 544 lectures, but
good review articles can be found in the published
literature.
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Physical Interpretation: The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

,f.‘ =eX : electric dipole moment of the atom

-

The Eqgs. Of motion can then be recast as

dt s, 2L = Fe %2
Mo, R (V)ERE) = F= -V V(X € 4)

A ~ L~ o )

=0

Y-i)

!

where v('i‘?'.(,) = ,81[-_:‘[

|

=>
e
HOW = - 2>
Ren = Mr"T)o X
resonance frequency
origin

This is meant as a model of the atomic response,
not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a

electric-dipole interaction

Note: The COM Eq. is the foundation for a range
of laser Atom Traps and Optical Tweezers. We will
not explore this further in OPTI 544 lectures, but
good review articles can be found in the published
literature.

point-like nucleus and a spherical electron cloud

Electron cloud Force from charge inside 7 as if

entire charge was at the center

Force from charge outside 7 is zero
r3
Force [oc— ocp

rzT

nucleus harmonic restoring force

11
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The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

>
e
n OW = - 2>
r—én - Mo})u X
resonance frequency
origin

This is meant as a model of the atomic response,
not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a
point-like nucleus and a spherical electron cloud

Electron cloud Force from charge inside 7 as if
entire charge was at the center

Force from charge outside 7 is zero

3
Force Focr—zocr

"

nucleus harmonic restoring force

Now substitute f:;,l =-mmw, ¥ into eq. for X

. . T ~5 .
Combine with P=Np, ,F- ex where N is the
number den5|ty of atoms. This relates the

macroscopic D to the microscopic X

Maxwell’s Equations

We now have
The Lorentz model

-

Maxwell-Lorentz Equations
We can seek self-consistent
solutions to wave propagation

End 01-16-2024
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