Atom-Light Interaction: Multi-Level Atoms

Starting point - the Hydrogen atom

$$
\begin{aligned}
& H_{a}=\frac{P^{2}}{2 m}-\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{|\vec{r}|} \\
& V_{e x t}(\vec{r}, \vec{R}, t)=-e \vec{r} \cdot \vec{E}(\vec{R}, t) \\
& \vec{r}: \text { relative } \vec{R}: \text { center-of-mass }
\end{aligned}
$$

Note: Frequencies for transitions $n \rightarrow n^{\prime}, n^{\prime \prime} \rightarrow n^{\prime \prime \prime}$ are very different \Rightarrow near-resonant approx. with a single transition frequency $\omega \sim \omega_{0}$
Levels $\langle u \ell\rangle$ are generally degenerate with respect to the quantum number m, so we cannot isolate a 2-level system only through its transition frequency.

We must therefore consider Selection Rules

Interaction matrix element

$$
\left\langle n^{\prime} l^{\prime} n^{\prime}\right| V_{\text {ext }}|n \ell m\rangle \propto \int_{-\infty}^{\infty} d r^{3} \varphi_{n^{\prime} l^{\prime} m^{\prime}}^{*}(\vec{r}) \vec{r} \varphi_{n l m}(\vec{r})
$$

Wavefunction parity is even/odd depending on ℓ

$$
\varphi_{n \ell m}(\vec{r})=(-1)^{l} \varphi_{n l m}(-\tilde{r})
$$

$\Rightarrow\langle | V\left\rangle\right.$ can be non-zero only if $\left(\ell-\ell^{\prime}\right)$ is odd.
This is the Parity Selection Rule!
${ }^{(*)}$ This is not strictly true due to spin-orbit coupling.

Atom-Light Interaction: Multi-Level Atoms

Note: Frequencies for transitions $n \rightarrow n^{\prime}, n^{\prime \prime} \rightarrow n^{\prime \prime \prime}$ are very different \Rightarrow near-resonant approx. with a single transition frequency $\omega \sim \omega_{0}$

Levels $|n \ell\rangle$ are generally degenerate with respect to the quantum number m, so we cannot isolate a 2-level system only through its transition frequency.

We must therefore consider Selection Rules

Interaction matrix element

$$
\left\langle n^{\prime} l^{\prime} n^{\prime}\right| V_{\text {ext }}|n \ell m\rangle \int_{-\infty}^{\infty} d r^{3} \varphi_{n^{\prime} l^{\prime} m \prime}^{*}(\vec{r}) \vec{r} \varphi_{n l_{m}}(\vec{r})
$$

Wavefunction parity is even/odd depending on ℓ

$$
\varphi_{n l m}(\vec{r})=(-1)^{l} \varphi_{n l m}(-\vec{r})
$$

$\Rightarrow\langle | V\left\rangle\right.$ can be non-zero only if $\left(\ell-\ell^{\prime}\right)$ is odd.
This is the Parity Selection Rule!
${ }^{(*)}$ This is not strictly true due to spin-orbit coupling.

Next: We will find selection rules that derive from the angular symmetry of the matrix element

We need to develop the proper math language
\Rightarrow spherical basis vectors and harmonics
Consider an arbitrary set of orthonormal basis Vectors $\vec{\varepsilon}_{i}, \vec{\varepsilon}_{j}, \vec{\varepsilon}_{k}$. We can always write

$$
\vec{r}=\left(\vec{r} \cdot \vec{\varepsilon}_{i}\right) \vec{\varepsilon}_{i}+\left(\vec{r} \cdot \stackrel{\varepsilon}{\varepsilon}_{j}\right) \vec{\varepsilon}_{j}+\left(\vec{r} \cdot \vec{\varepsilon}_{h}\right) \vec{\varepsilon}_{k}
$$

Cartesian basis: $\quad \vec{\varepsilon}_{i}=\vec{\varepsilon}_{x}, \vec{\varepsilon}_{j}=\vec{\varepsilon}_{y}, \vec{\varepsilon}_{k k}=\vec{\varepsilon}_{z}$
(real-valued)
Spherical basis: $\quad\left\{\begin{array}{l}\vec{\varepsilon}_{i}=\vec{\varepsilon}_{1}=-\frac{1}{\sqrt{2}}\left(\vec{\varepsilon}_{x}+i \vec{\varepsilon}_{y}\right) \\ \vec{\varepsilon}_{j}=\vec{\varepsilon}_{-1}=\frac{1}{\sqrt{2}}\left(\vec{\varepsilon}_{x}-i \vec{\varepsilon}_{y}\right) \\ \vec{\varepsilon}_{h}=\vec{\varepsilon}_{0}=\vec{\varepsilon}_{z}\end{array}\right.$

Reminder: Scalar products of complex vectors

Dirac notation
$\{|a\rangle+i|b\rangle,|c\rangle\}$
$=(\langle a|-i\langle b|)|c\rangle$
$=\langle a \mid c\rangle-i\langle b \mid c\rangle$

Regular notation

$$
(\vec{a}+i \vec{b}) \cdot \vec{c}
$$

$$
=\vec{a} \cdot \vec{c}-i \vec{b} \cdot \vec{c}
$$

(anti-linear in $1^{\text {st }}$ factor)

Atom-Light Interaction: Multi-Level Atoms

Math Preamble: The Spherical Basis
(1) Prove the relations (Homework)

$$
\vec{\varepsilon}_{q}^{*}=(-1)^{q} \vec{\varepsilon}_{q}, \quad \vec{\varepsilon}_{q} \cdot \cdot \vec{\varepsilon}_{q}=\delta_{q q^{\prime}}, \vec{\varepsilon}_{q^{\prime}} \cdot \vec{\varepsilon}_{q}^{*}=(-1)^{q} \delta_{-q^{\prime} q}
$$

(2) Show that

$$
\begin{gathered}
\vec{r}=\sum_{q=0, \pm 1}\left(\vec{r} \cdot \vec{\varepsilon}_{q}\right) \vec{\varepsilon}_{q}=r \sqrt{\frac{4 \pi}{3}} \sum_{q=0, \pm 1} y_{1}^{q} \vec{\varepsilon}_{q} \\
\text { where } \quad Y_{1}^{ \pm 1}(\theta, \varphi)= \pm \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \varphi} \\
Y_{1}^{0}(\theta, \varphi)=\sqrt{\frac{3}{4 \pi}} \cos \theta
\end{gathered}
$$

(Spherical Harmonics)

Example:

$$
\vec{\varepsilon}_{1}=\frac{1}{\sqrt{2}}\left(\vec{\varepsilon}_{x}+i \vec{\varepsilon}_{z}\right) \Rightarrow \vec{r} \cdot \vec{\varepsilon}_{1}=-\frac{1}{\sqrt{2}}\left(\vec{r}_{\cdot} \vec{\varepsilon}_{x}+i \vec{r} \cdot \vec{\varepsilon}_{y}\right)
$$

Substitute:
(Spherical Coordinates)

$$
\vec{r} \cdot \vec{\varepsilon}_{x}=r \sin \theta \cos \phi \quad \vec{r} \cdot \vec{\varepsilon}_{y}=r \sin \theta \sin \phi
$$

$$
\begin{aligned}
\vec{r} \cdot \vec{\varepsilon}_{1} & =r \frac{1}{\sqrt{2}}(\sin \theta \cos \varphi+i \sin \theta \sin \varphi) \\
& =r \frac{1}{\sqrt{2}} \sin \theta e^{i \varphi}=r \sqrt{\frac{4 \pi}{3}} y_{1}^{1}(\theta, \varphi)
\end{aligned}
$$

Relations for $q=0,-1$ follow similarly.

$$
\vec{r}=\sum_{q=0, \pm 1}\left(\vec{r} \cdot \vec{\varepsilon}_{q}\right) \vec{\varepsilon}_{q}=r \sqrt{\frac{4 \pi}{3}} \sum_{q=0, \pm 1} y_{1}^{q} \vec{\varepsilon}_{q}
$$

Atom-Light Interaction: Multi-Level Atoms

Example:

$$
\vec{\varepsilon}_{1}=\frac{1}{\sqrt{2}}\left(\vec{\varepsilon}_{x}+i \vec{\varepsilon}_{y}\right) \Rightarrow \vec{r}_{\cdot} \vec{\varepsilon}_{1}=-\frac{1}{\sqrt{2}}\left(\vec{r}_{\cdot} \vec{\varepsilon}_{x}+i \vec{r} \cdot \vec{\varepsilon}_{y}\right)
$$

Substitute: (Spherical Coordinates)

$$
\begin{aligned}
\stackrel{\rightharpoonup}{r} \cdot \vec{\varepsilon}_{x} & =r \sin \theta \cos \phi \quad \stackrel{\rightharpoonup}{r} \cdot \vec{\varepsilon}_{y}=r \sin \theta \sin \phi \\
\vec{r} \cdot \vec{\varepsilon}_{1} & =r \frac{1}{\sqrt{2}}(\sin \theta \cos \varphi+i \sin \theta \sin \varphi) \\
& =r \frac{1}{\sqrt{2}} \sin \theta e^{i \varphi}=r \sqrt{\frac{4 \pi}{3}} y_{1}^{1}(\theta, \phi)
\end{aligned}
$$

Relations for $q=0,-1$ follow similarly.

$$
\vec{r}=\sum_{q=0, \pm 1}\left(\vec{r} \cdot \vec{\varepsilon}_{q}\right) \vec{\varepsilon}_{q}=r \sqrt{\frac{4 \pi}{3}} \sum_{q=0, \pm 1} y_{1}^{q} \vec{\varepsilon}_{q}
$$

End Math Preamble

Back to the Dipole Matrix Elements. First:

$$
\begin{aligned}
V_{\text {ext }}= & -e \vec{r} \cdot \vec{E}(t) \leftarrow \text { Hermitian } \\
\vec{E}(t)= & \frac{1}{2} E_{0}\left(\vec{\varepsilon}_{q} e^{-i \omega t}+\vec{\varepsilon}_{q}^{*} e^{i \omega t}\right) \\
= & \frac{1}{2} E_{0}\left(\vec{\varepsilon}_{q} e^{-i \omega t}+(-1)^{q} \vec{\varepsilon}_{q} e^{i \omega t}\right) \\
& \text { electric field polarization }
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {ext }}= \\
& -\sqrt{\pi / 3} e E_{0} r(\sum_{q^{\prime}} Y_{1}^{q^{\prime}} \underbrace{\delta_{q^{\prime}}(-q)}_{\left.\delta_{q^{\prime}}\right) \cdot\left(\vec{\varepsilon}_{q} e^{-i \omega t}+(-1)^{q} \vec{\varepsilon}_{-q} e^{i \omega t}\right)} \\
& V_{\text {ext }} \propto r\left(Y_{1}^{q} e^{-i \omega t}+(-1)^{q} y_{t}^{-q} e^{i \omega t}\right)
\end{aligned}
$$

Atom-Light Interaction: Multi-Level Atoms

Back to the Matrix Elements. First:

$$
\begin{aligned}
V_{\text {ext }}= & -e \vec{r} \cdot \vec{E}(t) \\
\vec{E}(t)= & \frac{1}{2} E_{0}\left(\vec{\varepsilon}_{q} e^{-i \omega t}+\vec{\varepsilon}_{q}^{*} e^{i \omega t}\right) \\
= & \frac{1}{2} E_{0}\left(\vec{\varepsilon}_{q} e^{-i \omega t}+(-1)^{q} \vec{\varepsilon}_{q} e^{i \omega}\right) \\
& \text { electric field polarization }
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {ext }}= \\
& -\sqrt{\pi / 3} e E_{0} r(\sum_{q^{\prime}} Y_{1}^{q^{\prime}} \underbrace{\delta_{q^{\prime}}(-q)}_{\underbrace{}_{\left.\varepsilon_{q^{\prime}}\right) \cdot\left(\vec{\varepsilon}_{q}\right.} e^{-i \omega t}+(-1)^{q} \vec{\varepsilon}_{-q^{\prime}} e^{i \omega t})}
\end{aligned}
$$

$$
V_{e x t} \propto r\left(Y_{1}^{q} e^{-i \omega t}+(-1)^{q} y_{t}^{-q} e^{i \omega t}\right)
$$

The matrix element = overlap integral

where

$$
\varphi_{n l m}(\vec{r})=R_{n} l(r) Y_{l}^{m}(\theta, \varphi)
$$

$$
\begin{aligned}
V_{21} & =\left\langle n^{\prime} l^{\prime} m^{\prime}\right| V_{\text {ext }}|n \ell m\rangle \\
& =R \times \prod_{\begin{array}{c}
\text { radial } \\
\text { integral }
\end{array}}^{\int_{4 \pi} d \Omega\left(Y_{R^{\prime}}^{m^{\prime}}\right)^{*}\left(Y_{1}^{q} e^{-i \omega t}+(-1)^{q} Y_{1}^{-q} e^{i \omega t}\right) Y_{R}^{m}}
\end{aligned}
$$

Thus, to within a constant factor

$$
V_{21}=\left\langle\ell^{\prime} m^{\prime}\right| Y_{1}^{q} e^{-i \omega t}+(-1)^{q} Y_{1}^{-q} e^{i \omega t}|\ell m\rangle=V_{12}^{*}
$$

Atom-Light Interaction: Multi-Level Atoms

The matrix element = overlap integral

$$
\begin{aligned}
& V_{21}=\left\langle n^{\prime} \ell^{\prime} m^{\prime}\right| V_{e_{x t}}|n \ell m\rangle \\
& \propto \int_{\mathbb{R}^{3}} d^{3} r \varphi_{n^{\prime} \ell^{\prime} m^{\prime}}(\vec{r}) \overbrace{r\left(Y_{1}^{q} e^{-i \omega t}+(-1)^{q} Y_{1}^{-q} e^{i \omega t}\right)} \varphi_{n \ell m}(\vec{r})
\end{aligned}
$$

where

$$
\varphi_{n l m}(\vec{r})=R_{n l}(r) Y_{l}^{m}(\theta, \varphi)
$$

$$
V_{21}=\left\langle n^{\prime} l^{\prime} m^{\prime}\right| V_{\text {ext }}|n \ell m\rangle
$$

$$
=\prod_{\substack{\text { radial } \\ \text { integral }}}^{\int_{4 \pi} d \Omega\left(Y_{R^{\prime}}^{m^{\prime}}\right)^{*}\left(Y_{1}^{9} e^{-i \omega t}+(-1)^{q} y_{1}^{-q} e^{i \omega t}\right) Y_{R}^{m}}
$$

Thus, to within a constant factor

$$
V_{21}=\left\langle\ell^{\prime} m^{\prime}\right| Y_{1}^{q} e^{-i \omega t}+(-1)^{q} Y_{1}^{-q} e^{i \omega t}|\ell m\rangle=V_{12}^{*}
$$

Resonant terms:

$$
\begin{array}{ll}
\frac{1}{1}|2\rangle=\mid \ell^{\prime} m & \\
e^{-i \omega t} & 12\rangle=\left|\ell^{\prime} m^{\prime}\right\rangle \\
\frac{e^{i \omega t}}{1}|1\rangle=|\ell m\rangle & \downarrow \\
& \downarrow\rangle=|\ell m\rangle
\end{array}
$$

Recall from 2-level system:

$$
\begin{aligned}
& i \dot{a}_{1}=-\frac{1}{2}\left(X_{12} e^{-i \omega t}+X_{21}^{*} e^{i \omega t}\right) a_{2} \\
& i \dot{a}_{2}=\omega_{21} a_{2}-\frac{1}{2}\left(X_{21} e^{-i \omega t}+X_{12}^{*} e^{i \omega t}\right) a_{1}
\end{aligned}
$$

$$
\begin{aligned}
& i c_{1}(t)=-\frac{1}{2}\left(x_{12} e^{-i 2 \omega t}+\chi_{21}^{*}\right) c_{2}(t) \\
& i \dot{c}_{2}(t)=\left(\omega_{21}-\omega\right) c_{2}(t)-\frac{1}{2}\left(x_{21}+x_{12}^{*} e^{i 2 \omega t}\right) c_{1}(t)
\end{aligned}
$$

(RNA)

$$
\begin{aligned}
& i \dot{c}_{1}(t)=-\frac{1}{2} x_{21}^{*} c_{2}(t) \\
& i \dot{c}_{2}(t)=\Delta c_{2}(t)-\frac{1}{2} x_{21} c_{1}(t)
\end{aligned}
$$

Atom-Light Interaction: Multi-Level Atoms

The matrix element = overlap integral

$$
V_{21}=\left\langle n^{\prime} l^{\prime} m^{\prime}\right| V_{\text {ext }}|n \ell m\rangle
$$

$$
\alpha \int_{\mathbb{R}^{3}} d^{3} r \varphi_{n^{\prime} \ell^{\prime} m^{\prime}}^{\psi}(\vec{r}) \quad\left(\begin{array}{l}
\left.Y_{1}^{q} e^{-i \omega t}+(-1)^{q} y_{i}^{-q} e^{i \omega t}\right)
\end{array} \varphi_{n \ell m}(\vec{r})\right.
$$

where

$$
\varphi_{n l m}(\vec{r})=R_{n} l(r) Y_{l}^{m}(\theta, \varphi)
$$

$$
V_{21}=\left\langle n^{\prime} l^{\prime} m^{\prime}\right| V_{\text {ext }}|n \ell m\rangle
$$

$$
=\prod_{\substack{\text { radial } \\ \text { integral }}}^{\int_{4 \pi} d \Omega\left(Y_{R^{\prime}}^{m^{\prime}}\right)^{*}\left(Y_{1}^{9} e^{-i \omega t}+(-1)^{q} y_{1}^{-g} e^{i \omega t}\right) Y_{R}^{m}}
$$

Thus, to within a constant factor

$$
V_{21}=\left\langle\ell^{\prime} m^{\prime}\right| Y_{1}^{q} e^{-i \omega t}+(-1)^{q} Y_{1}^{-q} e^{i \omega t}|\ell m\rangle=V_{12}^{*}
$$

In the RWA we have $\left(y_{e}^{m}\right)^{*}=(-1)^{m} y_{e}^{-m}$, giving us

$$
\begin{aligned}
& V_{21} \propto\left\langle l^{\prime} m^{\prime}\right| V_{1}^{q} e^{-i \omega t}|l m\rangle \\
& V_{12} \propto\langle l m|(-1)^{q} y_{1}^{-q} e^{i \omega t}\left|\ell^{\prime} m^{\prime}\right\rangle
\end{aligned}
$$

$\underset{\text { factor }}{\text { dropping }}(-1)^{q}$

$$
\begin{aligned}
& V_{21} \propto \int d \Omega\left(Y_{l^{\prime}}^{m^{\prime}}\right)^{*} Y_{1}^{q} Y_{e}^{m} \propto\left\langle 1, q_{j} l m \mid l^{\prime} m^{\prime}\right\rangle \\
& V_{12} \propto \int d \Omega\left(Y_{e}^{m}\right)^{*} Y_{1}^{-q} Y_{e^{\prime}}^{m^{\prime}}
\end{aligned} \propto\left\langle 1,-q_{j} l^{\prime} m^{\prime} \mid \ell m\right\rangle
$$

Clebsch-Gordan coefficients

Next: We can understand this as conservation of angular momentum when a photon is absorbed or emitted

Selection Rules for Electric Dipole Transitions

Atom-Light Interaction: Multi-Level Atoms
In the RWA we have $\left(y_{e}^{m}\right)^{*}=(-1)^{m} y_{e}^{-m}$, giving us

$$
\begin{aligned}
& V_{21} \propto\left\langle l^{\prime} m^{\prime}\right| V_{1}^{q} e^{-i \omega t}|l m\rangle \\
& V_{12} \propto\langle l m|(-1)^{q} y_{1}^{-q} e^{i \omega t}\left|\ell^{\prime} m^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { dropping }(-1)^{q} \\
& V_{21} \propto \int d \Omega\left(Y_{e^{\prime}}^{m^{\prime}}\right)^{*} Y_{1}^{q} Y_{e}^{m} \\
& \propto\left\langle 1, q_{j} l m \mid l^{\prime} m^{\prime}\right\rangle \\
& V_{12} \propto \int d \Omega\left(Y_{e}^{m}\right)^{*} Y_{1}^{-q} Y_{e^{\prime}}^{m^{\prime}}
\end{aligned} \propto\left\langle 1,-q_{j} l^{\prime} m^{\prime} \mid \ell m\right\rangle
$$

Clebsch-Gordan coefficients

Next: We can understand this as conservation of angular momentum when a photon is absorbed or emitted

Selection Rules for Electric Dipole Transitions

