Begin 01-23-2024

Free Electrons

Consider the limit L) > @,

© effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have
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We introduce the
Plasma Frequency

Light-Matter Interaction
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Let Nlew) purely imaginary
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Light-Matter Interaction, Free Electrons

Examples of this kind of medium includes plasmas, and metals such as aluminum,
silver and gold which are known to be excellent mirrors for visible and IR
radiation.



Quantum Theory of Light-Matter Interaction

Completed:
— Fully classical description of fields & Atoms

Next Step:

. . . Classical field
— Semiclassical description

Quantum atoms

Self-Consistent Description

Electromagnetic Field — Atom/Molecule/Solid
A I

Needed: Quantum theory of atomic response

analogous to classical

Note: In QM the dipole is an Observable
Observable = Hermitian operator

Classical Field = C-valued vector

Cannot plug into Wave Eq. for classical field!

Wave Equation w/classical field & atoms

(Vi__.!. ke )E _'L.BL S’ 5':“%{
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How do we deal with this mis-match?

Repeated measurements of /'ﬁ[-{,)

. .
Quantum fluctuations {’l‘[-é\'—'- (lﬁfi)) +Ag‘('{-3

here <7L(é3>=(tgf£1lﬁf!{[£)> mean T

fluctuations

. = -
Note: Given [4(+=0)) and E the mean (/(l(i))
follows from the Schrodinger Eq.,

) ] ) -
radiates coherently like classical /‘l[-é)

(/’ﬁ(-{,)) is a Real-valued vector (more later)
®» we can plug it into the Wave Eq.
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Quantum Theory of Light-Matter Interaction

PROBLEMS THAT GET PROBLEMS GET EASER
HARDER WHEN YOU BRING My ol ER

IN QUANTUM MECHANICS

Source: xkcd.com



Quantum Theory of Light-Matter Interaction

Completed:
— Fully classical description of fields & Atoms

Next Step:

. . . Classical field
— Semiclassical description

Quantum atoms

Self-Consistent Description

Electromagnetic Field — Atom/Molecule/Solid
A )

Needed: Quantum theory of atomic response

analogous to classical

Note: In QM the dipole is an Observable
Observable = Hermitian operator

Classical Field = C-valued vector

Cannot plug into Wave Eq. for classical field !

Wave Equation w/classical field & atoms

(VQ_L o )E ._L_BL p'_, 6!___”/?:

Yy byt A

How do we solve the mismatch?

Repeated measurements of /-ﬁf-ﬁ)

.
Quantum fluctuations {’l‘[ﬂ'—‘— (ﬁ[-&)) +A’J‘(’CS

N o a2 ‘l‘
where <I{L({’}> é‘f‘f“‘- I’? [40£)) mean

fluctuations

. = ry
Note: Given [y (+=0)) and E, the mean (/(tH,)}
follows from the Schrodinger Eq.,

) ) ) -
radiates coherently like classical /(t[-{,)

(/’ﬁ[-{,)) is a Real-Valued vector (more later)
£ we can plug it into the Wave Eq.
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Quantum Theory of Light-Matter Interaction

Wave Equation w/classical field & atoms

Wave Equation w/classical field & atoms

2___'_ 39‘ = _ ._1;_ BL > ~
(V ngg-)g —Eac,_;zp ’ p

ﬂwﬁ

pA L -
(7-630)E= a5 PN

How do we solve the mismatch?

Repeated measurements of /-ﬁ[-{,)

-
Quantum fluctuations {’t‘[ﬂ'—'- qﬁ[i)) +Agl('(-3

N o i) ’[
where </{L(-é3> <'zgfe [72 1y6€)) mean

fluctuations

. = -
Note: Given[y(+=0)) and E, the mean (/‘l(i)}
follows from the Schrodinger Eq.,

] ) ) -
radiates coherently like classical /(l(-t)

(/'ﬁ[t)) is a Real-Valued vector (more later)
©> we can plug it into the Wave Eq.

Note: - The Equations look very similar

- Polarizability, index of refraction, etc
will be very different in some regimes

- Notably, the model is no longer linear
in and will lead to phenomena like
saturation and wave mixing

- represents quantum fluctuations
driven by the empty modes of the EM
field, a process also responsible for
spontaneous decay.

Note: Do not identify (/'ﬁ) and with
Stimulated and spontaneous emission.
Those labels are not meaningful here.
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Quantum Theory of Light-Matter Interaction

Wave Equation w/classical field & atoms

9 ¢ o>
(V&"év.?ia.)g= 1,2.P ’ 5=M(7ﬁ>

Note: - The Equations look very similar

- Polarizability, index of refraction, etc
will be very different in some regimes

- Notably, the model is no longer linear
in and will lead to phenomena like
saturation and wave mixing

- represents quantum fluctuations
driven by the empty modes of the EM
field, a process also responsible for
spontaneous decay.

Note: Do not identify ()ﬁ) and with
Stimulated and spontaneous emission.

Those labels are not meaningful here.

Atom-field interaction

Hamiltonian:

time-independent atomic Hamiltonian

: time-dependent driving term,
non necessarily a perturbation

Question: Time evolution of the atomic system?
Is there a steady state?

Schrodinger Eq.:

Expand in basis of eigenstates of

4y =2 0,810, Hldy=E, >
n



Quantum Theory of Light-Matter Interaction

Atom-field interaction

Hamiltonian:

time-independent atomic Hamiltonian

: time-dependent driving term,
non necessarily a perturbation

Question: Time evolution of the atomic system?
Is there a steady state?

Schrodinger Eq.:

Expand in basis of eigenstates of

4y =2 a,8)1@,>, H8>=E,If,>

Pluginto S.E. &)

Take scalar product w/ on both sides »

On vector-matrix form this can be written

« S.E. in rep.
Still exact!




Quantum Theory of Light-Matter Interaction

Pluginto S.E. &)

Take scalar product w/

on both sides »

On vector-matrix form this can be written

«

S.E. in rep.

Still exact!

Note: If H, and V. are known we can do

- Perturbation Theory
(OK for short times or “weak” driving fields)

- Numerical integration of the S. E.
- Few-level approximations to simplify

and obtain analytical solutions outside
the perturbative regime

General problem:
No analytical solution!



Begin 01-25-2024

General observation:

- Atoms and molecules often behave as if they
have a single, dominant transition frequency

- We expect this when the freq. of the driving
is resonant with one transition
and far off resonance with all others.

State space ) {I1>,12>]
- % 1>
Interaction ey,
—L— 1y

State vector

Schrod. eq.

&5 (0 " N 5> [
Observables /(\=(—~/%) » V:-m.ﬁg(\‘z“;t)

Vig L8 = = Ay -;—_(QEDQT"""H ce)

Interaction - . .
) = -y s (EE,7"™ 4 c.)

Atom-Light Interaction: 2-Level Approximation

Parity selection rule

Definition: ¥~ is a reflection through the origin

Atomic Hamiltonian HL -‘f— » H(#) < H(-'\H
» Eigenstates ((7) = :';LPH:) = CP('-T-‘[-T‘J)

“+” for even parity  two reflections
“” for odd parity equals the identity

The dipole is a vector operator ®
transforms like a vector when V" — —V

Thus and

only when

and have opposite parity

. . No dipole moment in
Parity rule: energy eigenstate!

10



Atom-Light Interaction: 2-Level Approximation

General observation:

- Atoms and molecules often behave as if they
have a single, dominant transition frequency

- We expect this when the freq. of the driving
is resonant with one transition
and far off resonance with all others.

State space , {M D, 12>]
—— >
Interaction ey,
—L— 1y

State vector

Schrod. eq.

Observables

Vo ld) z-a LEE e Piec o
Interaction T35 )

We define

E -
w)-l = = E{ ’ E1 =0
e
Wy = 'F(q_’ éE,/sBT } interaction energy is /@p')(
XL! = )X‘n‘l[' éEo/’&

% Rabi frequency

%X "
= " . E' +-
Note: {X1: 1&1; (5‘ NED) Jf?ﬁ,
Xop = Ay (EE, /)" #£ Xy

— -

0 ‘ _X'Le-iwt__x:e}we
H = ﬁ (~ XZ.] elW’f?‘_ X;'::e:-[wt' "Ou’
Plug into (S. E.) to get

G,k (%9 + 05 9 a,

P ( ~W F il
18y = Wy, 8y -5 (Xye" Wt ™) g,

11



Atom-Light Interaction: 2-Level Approximation

We define

Wy, = E, - E,

e
Wy = ﬁ(q_' éE,/& } interaction energy is ;@r,')d
X)_l = )X‘A‘l[' éEo/&

) E‘t =D

L Rabi frequency

Switch to rotating frame (slow variables)
C_1 {‘E) = aq ['L.)' CL[.L) = alC'f.) Q.}N'b

-

% -
= m . E' +-
Note: {X?: /6‘_..” (E‘ 01’&3 **Xz,
Xs.r = e CéEo/igf) ¢X|2_

0 ‘ -X,Le"‘“’t-x;‘,“ef“*
H = /ﬁ, (" XLI e'wt— X::e:—'wt_ Wyt
Plug into (S. E.) to get

Cyt)= -4 (X e W k) ¢ o)

(Gl = (o~ w) &) 5 (¥ +XF e M)c, )

Rotating Wave Approximation (RWA)

Very important, equivalent to resonant approximation

*120
Terms «C L2 ‘2t

for variations in

average to zero on time scale

P

i, = '_"[i (X, &Y + X3 '™¢) Ry

Lo ( ~ F it
‘9\1"“’9.:01*1[7(1:@ e+

i (detuning)

Exactly Solvable !
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Atom-Light Interaction: 2-Level Approximation

Switch to rotating frame (slow variables)
Cole) = GylL),  C ) =0yt¢) ™t

-

Cyte)=- 4 (X, e 4k ) co )

() = (g~ w) G~ (3, + X M)C, )

Rotating Wave Approximation (RWA)

Very important, equivalent to resonant approximation

+120W
Terms<>C2.' t

for variations in

-

average to zero on time scale

i (detuning)

Exactly Solvable !

To simplify, make a global phase choice such that

Xy, = 4ty EE, /4 = X isreal (not required)

Rt

Simplest 2-level equations

iC,[4) = -3 XC, (&)
1gte) = AL, ) - 7 XC,(E)

Rabi Solutions for  C,(0)=2 C,(0) =0

a4, at| A
(8= cos B 41 B gia BE) s8¢/

[ X o e ~iAt]g
CD_H: "(‘:‘—}:QIVI Z}Q

X: Rabifreq. A: Detuning

N =\ X2+Al: Generalized Rabi freq.
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Atom-Light Interaction: 2-Level Approximation

To simplify, make a global phase choice such that

Xy, = 4ty €E,/4k = X isreal (not required)

-

Simplest 2-level equations

iC,[4) =-3 X ¢, (&)
1gte) = AL, ) - 7 XC,(E)

Rabi Solutions for  C,(0)=1,(,(0) =0

2t b, | —ia
C,[é):(dog %’FIIg'W T) Q/l t/2

[ X . bl ~iAL)
Colt -(\l—lgm—f)e >

X: Rabifreq. A : Detuning

N =\ X2+Al: Generalized Rabi freq.

Note: The Rabi Solutions give us the entire state,
in the lab (a’s) and rotating (c’s) frames

— -

We have maximum information about the system
and can make any predictions allowed by QM

Probabilities of finding the atomin |15 [2):

L
Riy=lcort = (1e4)+

%
R4\ = [yl = ’,lj 2(5_1 [4~cos 0t

R )

1\
1.0 £7°

0.5 T

+ Xt
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Atom-Light Interaction: 2-Level Approximation

Note: The Rabi Solutions give us the entire state, Note: All 2-level systems are isomorphic
in the lab (a’s) and rotating (c’s) frames

—_-

We have maximum information about the system

Equivalent Observables
Equivalent Phenomena

The Rabi problem was first solved in ESR and

and can make any predictions allowed by QM NMR, for spin-1/2 particles with a magnetic

moment X driven by a magnetic field 2

Probabilities of finding the atomin |17, [2): with interaction H=/R'
- 2-level systems are now often called qubits
_ L_tg,, Aty 1 X%
Rty =1¢,6)] =3 (14 t )+l:!—i‘l- Cog Dt
v LY Dressed States
(P)_H;\ = [cp_(:é\[ =3 L) [1 Cos -D-'L} The 2-level egs. in the RWA look like a S.E. with
O X
oA (5 )
Rw ~1
& X A

The eigenstates of HRW a are called Dressed States

The DS are stationary only in the Rotating Frame.

In the Lab Frame (Schrodinger Picture) they are
periodic, oscillating w/frequency (v

15



Atom-Light Interaction: 2-Level Approximation

Comparison to the Classical Lorentz atom

Goal: To understand why the Lorentz model
works so well, and its limits of validity

Classical Equation of Motion:

ol L v\ o e 2 will derive similar
("* T Wy | wm E « equation for <>

Equation of Motion for <i5‘> . First step'

’ﬂu O
= Qi Qg ’(f'rs "'azaq (‘zl = ’(f‘m (a;“a&-raqa{)

(choose phase to make ’(—ﬁm real)

i o: b 2
We need an expression for —
P 01159-( ’(f‘>

We can find it from the S. E,, i. e., the eqs for the
a’s back when we first set up the Rabi problem.

We pick linear polarization so Ef:o is real-valued

and Vli =\/ ® The egs forthea’s are

;&df = i (B, +vay)
%a, = i (E 0y +Va,)
With this we have
& oo, = (Gfa, +00,)

= 20y~ o (100 Iay Y

Differentiating again gives us

(a QL] W QQ Ay —

atl & Y (1ay1%- 10, 1% )

'-"d%g-t[% (ia,lz~1a,!’)]

Looking at the eq.(x)for( é\') suggests we should
add the complex conjugate and multiply w ’(ﬁm
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Atom-Light Interaction: 2-Level Approximation

We pick linear polarization so EE-,, is real-valued This gives us

and Vti =V, =V ® The eqs for the a’s are

L)

d* L) 3y 2 20, Y N 1

&af = i(g,af +vay) (dt‘f“wo > = "= (114, )
lwo b — el

gy = ~i (B0t Vo) = = i (i 8 ) (1t~ 10y )

- a
With this we have A= <114 (L) ¢ dipole matrix element

d &  _ (A% #
OT{;QML“(QML*GH%) _
E,-E v To wrap up, we need to know a bit about real,
=i .l_é_i fa - %}(IQJL- Iaz[lj multilevel atoms. (We will revisit this soon)
;\f—/
o Pick linear polarization so £ is real-valued.
. . . . -~ - >
Differentiating again gives us Pick quantization axis along ¢ ® /=4, €&
L o+ 1l o+ V
Tplayay)=-w; a7a, % (1g,12-1g, 1) -
-2 [«\i (la,1*1a,})
0\15‘ & ! 1 3 “ 9
O £ o) <q> =220 2 (10,15 10,1
der  ° ° & A ]

Looking at the eq. for ¢ /f\’) suggests we should
add the complex conjugate and multiply w ’@1
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Atom-Light Interaction: 2-Level Approximation

This gives us

d* S 20,0,V
(ﬁm"'wp“)(f\): N :Z"' (la,(*~a,/*)

Lw,

R {FI‘L (ﬁ.z’g) (m'[‘l.__ [0'9.,2)

= aQ
M= {1 [’p [2 : dipole matrix element

To wrap up, we need to know a bit about real,
multilevel atoms. (We will revisit this soon)

Pick linear polarization so £ is real-valued.
Pick quantization axis along £ & 7%, - ’ﬁ‘u—g

Compare to Classical Equation of Motion

d> L B &F
( ﬁqﬁ Wo | N = E
et~ e
The two eqgs. have the same form if .
o, ("~ 0

This is the case for A >>X | Limit of weak
Or when 22N Excitation !
¢

Decay rate of 127

Amco 9.
e : «"l‘).

Oscillator Strength ,{), =

Like the classical equation,
but with modified polarizability !

End 01-25-2024 13



