Vector Model of the 2-Level Atom

We return to the Density Matrix
Equations of Motion for a 2-Level atom
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Note: In our previous iteration we studied the
Rate Equation approximation, which is useful
when we are looking for steady state solutions

Here our goal is different — we seek to recast
the Density Matrix formalism in a way that is
better suited to understanding and modeling
coherent evolution and transient phenomena.
This will also be useful when we study wave
and light pulse propagation.

Optical Bloch Equations (OBE’s)

Let P = =0 [> Q““"Qn gl’l 9::

® 3independent,
real-valued variables

Define A= Gy +8),
Bloch w=i(Q,—8y)
Variables
W= 0y ~&,,

Let X = l‘)cle,""P substitute in equations for @,
leaving out relaxation terms Ay_,, g 2, B
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Optical Bloch Equations

M= =AU - [XISin Paw
O =Au+ X [ConPw
w = -1X|(Cos o -SinPu)
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Optical Bloch Equations (OBE’s)

let [=0,=0 ® 914""9;1"1,9:_:9:

®» 3independent,
real-valued variables

Define M =Gy +8,
Bloch v=i(Qy—8y)

Variables
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Let X = lx]e,""P , substitute in equations for @,
leaving out relaxation terms Az,,l'; I (3

— -

Optical Bloch Equations
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O =Au+ X [CosPw
w =~ X (Cos@ v -CinPur)
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From the definition of the Bloch Variables we get
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Clearly, [Si[=1 ®» '77‘9’— =41 W pure state

Statesw/ [EI<1 ®» Tro*< 1 ®» mixed state

- _ - - 1/ O
§1=0 ® Ter=Ty ® f (oLz/9.>

maximally mixed

Note: The above suggests a physical state can
be represented by a vector § , Whose tip lies on
the surface of (pure) or inside (mixed) a sphere of
unit radius, and whose length is conserved under
Schrédinger evolution. This is the Bloch Sphere.
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ISt=1 W Tro*=1 ® pure state
Statesw/ [ZI<1 B Tro*<4 ®» mixed state

Clearly,

o t/y
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)r

maximally mixed

Note: The above suggests a physical state can
be represented by a vector Z , whose tip lies on
the surface of (pure) or inside (mixed) a sphere of
unit radius, and whose length is conserved under
Schrédinger evolution. This is the Bloch Sphere.
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(%) Do not confuse 2 with the state vector |4 .
|45 lives in a complex vector space. Also, do
not confuse & with a vector in real, physical
space. Z lives in an abstract, real-valued
vector space.

(*) Only if the 2- level system is a physical spin-1/2
particle does g correspond to an angular
momentum vector that lives in physical space.
In general, & is what we call a pseudo-spin,
not an actual physical spin.

Physical Interpretation of the Bloch Variables

We have (> =T (g%i) = gm/@.* %, T
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(%) Do not confuse 2 with the state vector |4 .
|45 lives in a complex vector space. Also, do
not confuse £ with a vector in real, physical
space. Z lives in an abstract, real-valued

vector space.

(%) Only if the 2-level system is a physical spin-1/2
particle does g correspond to an angular
momentum vector that lives in physical space.
In general, & is what we call a pseudo-spin,
not an actual physical spin.

Physical Interpretation of the Bloch Variables
We have (> =Tr (Q%‘) = Q. fu* S, L

-1t ( variables

- : it
where  G,,= - (n+iv)e fast
Gy =y -ve

) - YR YR drivin
E=Re(Zee” ] “faig®

It follows that

[NE = Wt =

Gy =3 (i) e, 3 i) VR,

= Re [ Fi, e W] + 0 Tl gy V4]

Thus
AL is the component of (/f‘\) in-phase w/ E
A is the component of (f\‘) in-quadrature w/@

Lastly, 1) = @4y ~Q,, is the population inversion.

Solution of the OBE’s
-

Q=-~I%X[4

p=0

Let /A =0 and X real and positive &) {

St +aok
B =-1X1cosq7 - [X[sing} + AL
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(%) Do not confuse 2 with the state vector |4 .
|45 lives in a complex vector space. Also, do
not confuse £ with a vector in real, physical
space. Z lives in an abstract, real-valued
vector space.

(%) Only if the 2-level system is a physical spin-1/2
particle does g correspond to an angular
momentum vector that lives in physical space.
In general, & is what we call a pseudo-spin,
not an actual physical spin.

Physical Interpretation of the Bloch Variables
We have (> =Tr (g%ﬁ) = Q. fu* S, L

where g,,=%(m+w)e)“*} fast

g =1(M-v'v')e';""t variables
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- - =t drivin
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It follows that

[NE = Wt =

Gy =3 (i) e, 3 i) VR,

= Re [ Fi, e W] + 0 Tl gy V4]

Thus
AL is the component of (/f‘\) in-phase w/ E
A is the component of (f\‘) in-quadrature w/@

Lastly, 1) = @4y ~Q,, is the population inversion.
Solution of the OBE’s

Let /A =0 and X real and positive &)

- -
{&=-IX[4;
T

p=0

simplified . * - choose global
equations ° M =0 phase so u(0) =0
v = Awr
W =~Xqr
Solution M =0
Rabi v=-Snd , 6=
Oscillations 4= ~(080
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Thus

AL is the component of (ﬁ) in-phase w/ E
A is the component of (%“\) in-quadrature W/E

Lastly, 1) = Q44 ~Q,, is the population inversion.
Solution of the OBE’s

-_ >
Let A=0 and X real and positive &) {& ==Xl

9=0

T
Simplified . - ¢ ! choose global
equations ° M =0 phase so u(0) =0
v = Awr
W ==X
Solution M =0
Rabi Vv=-5nbH ’ 9:?(’13—
Oscillations 4= ~(050

What if X = X(+)? We now have solutions

M =0

Pulse Area

V<=-Cing, O Theorem!

rX&')o({'
W= ~0s6 0

This is a very important result = We can deal

with pulses!
[
X () 1
Py O« area under curve /\
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M
Note:

Xlt)=~fiy EE.J = pt E(@/&

complex amplitude

Cannot remain real if the complex phase
of £(+) is changing with time
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What if X = X(+)? We now have solutions

M =0
. Pulse Area
o - ! |
W=~ (036 °
. . . We can deal
This is a very important result & with pulses !
4
X () 1
I O area under curve
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gFi-rw.L -
Siaitial
M
Note:

XIt) =~y EE. /% = m E(:)/:&

complex amplitude

Cannot remain real if the complex phase
of £[L) is changing with time

Note: The RWA is valid only in the

Some examples of O-pulses:

Different phase E) different axis of rotation

-

The Pulse Area Theorem is onI\L;IaIid if the
direction of the torque vector (Q is constant.

}Q_?«w

Slowly Varying Envelope Approx. ot

This may not hold for modern Ultrafast Lasers !

(quantum gates)

O=T ®=T &<
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Different phase E) different axis of rotation

-

The Pulse Area Theorem is onlv_;lalid if the
direction of the torque vector (O is constant.

Note: The RWA is valid only in the } 3

— LW
Slowly Varying Envelope Approx. ot

This may not hold for modern Ultrafast Lasers !

Some examples of O-pulses: (quantum gates)
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Ramsey Method of Separated Oscillatory Fields
(The Ramsey “trick”, 1989 Nobel in Physics)

S

. e
Single pulse measurement

of Wy, in Atomic Clock:

Xte)
Tr-pulse

X7+ AT

e

T

Idea is to measure population of [ as function
of A =Wy~ (J which is maximized for (J = (v, .

The frequency resolution is St < 1/, so very
long pulses are required. The atom is perturbed
by interaction with the light during the entire
interrogation and problems can occur due to
phase or amplitude noise on the light field. This is
not good since the clock is supposed to link to
the transition frequency of an unperturbed atom.
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Ramsey Method of Separated Oscillatory Fields
(The Ramsey “trick”, 1989 Nobel in Physics)

-

. e
Single pulse measurement

of Wy, in Atomic Clock:

Xte)

IXIT A
Tr-pulse

&}

T

Idea is to measure population of [ as function
of A =Wy~ (J which is maximized for (J=(v,,.

The frequency resolution is At < 1/T , So very
long pulses are required. The atom is perturbed
by interaction with the light during the entire
interrogation and problems can occur due to
phase or amplitude noise on the light field. This is
not good since the clock is supposed to link to
the transition frequency of an unperturbed atom.
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Ramsey’s two-pulse strategy:

X(4) Sequence of 2 short,
Tly T intense T/ pulses,
separated by a long
«T « OF free evolution period,
+  Sothat T8¢

During pulses [X| > A &. = [XIZ-I—AZ ~ KIS

Case A =0, path on the Bloch sphere

o)

Case A +0 , path on the Bloch sphere

10
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Ramsey’s two-pulse strategy:

X Sequence of 2 short,
Tl T intense T/y pulses,
separated by a long
free evolution period,
£ Sothat T 5> ¢

T\ 8¢

During pulses [X| > A © Z§ = [XFZ+Az ~ KT

Case A =0, path on the Bloch sphere

\ \ \

O
o)

Case A +0 , path on the Bloch sphere

5,
v

O

Ramsey’s two-pulse strategy:
X Sequence of 2 short,
Tly Tl intense T/ pulses,

separated by a long
«T < Ot free evolution period,
£ So that T 5> ¢

During pulses [X| > A © '&' = [XIZ+AT'; ~ KT

Again, if we measure the population of 1) as a
function of A = Wy~ (J, a maximum is found when
(W= (Jy,. However, the resolution is now oW « Y
where T is the time between pulses.

11
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Ramsey’s two-pulse strategy:

X Sequence of 2 short,
Ty T intense T pulses,

separated by a long
TSt free evolution period,
+  Sothat T8¢

During pulses [X|%A B Q= [XIT+4ak~ KT
Again, if we measure the population of 11 as a
function of A = Wy~ (J, a maximum is found when
(W= W,,. However, the resolution is now ow 1/T
where T is the time between pulses. This is an
enormous advantage for atomic clocks and other
forms of precision metrology.

https://www.nobelprize.org/prizes/physics/1989/summary/

https://www.nobelprize.org/uploads/2018/06/ramsey-
lecture.pdf

Spin Echo/Photon Echo

(%) Spin Echo pulse sequences are related to the
Ramsey “trick”, but their goal is different.

(%) Typically, one seeks to suppress sensitivity to
one or more uncontrolled parameters.

(%) Whole books have been written about the
design of composite pulses for different
purposes — google NMR Spin Choreography.

(%) We look at a classic example...

Spin Echo in Doppler Broadened gas:

Velocity Classes

® different A Spin Echo Sequence

Pl Doppler AL) P> 121

A profile A

A o A A A

around j aroundi around j

12
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free evol n

Spin Echo/Photon Echo AE\
(%) Spin Echo pulse sequences are related to the .

Ramsey “trick”, but their goal is different. by

TA
/AE\ ﬂ\r\
Q Py ; 3
(%) Typically, one seeks to suppress sensitivity to < I R :«d
|
°

one or more uncontrolled parameters.
'FFEQCVDL | /2
&

(%) Whole books have been written about the
design of composite pulses for different
purposes — google NMR Spin Choreography.

(%) We look at a classic example... : W

Spin Echo in Doppler Broadened gas:
(%) The term Spin Echo comes from NMR, where

Velocity Classes ) the expectation value of the transverse spin
© different A Spin Echo Sequence component decays due to dephasing of the
M (V" variables. The middle pulse causes them
XIS (D] _
Pl Doppler xL) to rephase and restores the transverse spin.
A profile A

(%) How might this translate to a Photon Echo?

& (%) What else can we do with Composite pulses?

Ao A A A — Some examples discussed in class...
around j aroundi around j

13
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Optical Bloch Equations including Relaxation

We pick X real for simplicity, and carry over the
relaxation terms from the Density Matrix Egs.:

115 Convention from NMR/ESR
\\ r;_ —z= A, +f, Longitudinal
P A ",; 2 U relaxation rate
2 2
=1 -1 1 Transverse
y /3 '_l;_ T t 2, relaxation rate

1> \ah

— -

M = ~Pun - v

o = - pu -+t X

n

-l we)-Yo
T;

(%) No closed-form solutions, numerics is easy.

(%) Relaxation &) [@{ is not conserved. Without a
driving field, 2 decays to south pole

Steady State Solutions to OBE’s:

AX

(o) =

Az‘f'[G?"-l- x’-ﬁ“t‘q

Transient response:

(1) Steady State for given X : A,turnoff@t=0

® analytic solution

OBE’s Free Induction Decay
M == AU MEE) = [ty COS AL — g, Sin A2 T
W =~ U+ b0 o0) = [w,cosot +u,¢in A{j@“@t

W)=~ [1-(w,-1) e YT

14
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Steady State Solutions to OBE’s:

(0 = 2X
N AZ'(-/G?"-% X’-/g':;
_ ~X0
0 () Bt
(o) = 1+ XpT
i A’-«t-p’--r X287,

Transient response:

(1) Steady State for given X ‘ A,turnoff@t=0

® analytic solution

OBE’s Free Induction Decay
M ==~ AU MEE) = [ty COS AL — g, Sin A2 TP
W =~ U+ DN 0(&) = [w,cosot +u,<in Aﬂ@“@t

WL\ =~ [1-(u,-1) ¥ ]

Radiation by {4}> (choose /'(T,_, real)

Eaug © T (&41) = 1, (Meosort £ wSimer )

{ Radiation at freqs. , W tA
Decay at rate /2

Transient response:

(2) System isin state [1) at £40

Damped Rabi Osc.

Integrate numerically ) (Optical Nutation)

15
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adiation by choose A1, rea rom Milloni erly, p.
Radiation by {/1> (ch 5, real) From Milloni & Eberly, p. 206
— -’-: -? . 10
Eong ® T (&41) = 4y, (meosovt t0SineE) w
v
Radiation at freqs. W, W £A o
) X= 10A
Decay at rate /2 (R
o VR 2 3 4
At
L)
Transient response: =S : it e
. . QO X=10A - Q0r: Vv y
(2) System is in state [1) at £40 B+ 15 I
-o%- V -
Damped Rabi Osc. A Bl TS :
Integrate numericall | . : 108
8 “ ically w (Optical Nutation) -0} 5 30A
Y ST S T a— YA cor 10 13
At At
() (a)

Figure 6.6 Numerical solutions of the v, w equations (6.5.21) for a mnge of collisional
damping rates. Note scale changes.

16



