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(a) The vacuum Rabi frequency is 
  
g = !

!p21 "
!
# k
!

E
"

,  where 
  

!
Ek =

"! k

2"0V
. 

 

 The field is parallel to the dipole so that  
!p21 !
!
" k =

!p21 = p21 ,  where 
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8! 2p21
2

3"0!#
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  Putting this together gives us the vacuum Rabi frequency: 
 

 

g = 1
!

3!0!"
3A21

8# 2
!$ k

2!0V
= 3c" 2A21

8#V

= 3% 3%108m / s % (852 %10&9m)2 % 3.28 %107 / s
8# %100 %10&6m %# (2 %10&6m)2

= 8.237 %108 / s

 

 
 We see that g  exceeds the rate of energy loss due to decay of the atomic excitation by 

more than an order of magnitude.  This means the system is in a regime where we can see 
coherent vacuum Rabi oscillations. 

 
(b) The probe transmission is going to show vacuum Rabi splitting.  Borrowing a sketch 

from the class notes, this looks as follows; 
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(a) The modified Jaynes-Cummings Hamiltonian is 
 

 

Ĥ = ω â†â + 1
2 ω σ̂ z

(1) + σ̂ z
(2)( )

Ĥ0

  
+ g σ̂ +

(1)â + σ̂ −
(1)â† + σ̂ +

(2)â + σ̂ −
(2)â†( )

ĤAF

  
 

 
 

(b) Eigenstates of Ĥ0 :     state   energy 
 
           1,1,0     −ω  
 

           
1,1,1
2,1,0
1,2,0

⎫

⎬
⎪

⎭
⎪

  0  

 
  

 In basis   1,1,0 , 1,1,1 , 2,1,0 , 1,2,0{ }    we have   

 

ĤAF = 

0 0 0 0
0 0 g g
0 g 0 0
0 g 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

 
 The upper left 1×1  represents the ground state which is not coupled and has eigenvalue 

λ = 0 . 
 
 The eigenvalues of the 3× 3  block are found by setting  
 

−λ g g
g −λ 0
g 0 −λ

= −λ 3 + 2λg2 = λ λ 2 − 2g2( ) = 0 ⇒ λ = 0,± 2g  

 
              

  Level diagram: 
 
 The eigenvalues of Ĥ  are thus 
 
    λ = −ω  
 
    λ = 0,± 2g  λ = 0,± 2g   
 
 
 
 

E!
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Problem III 
 
(a) The dipole operator is p̂ = ex̂ = ex0 b̂

† + b̂( ) , and therefore the dipole matrix elements are  
 

  pmn = m p̂ n = ex0 m b̂† + b̂ n =
ex0 n

ex0 n +1

for
for

m = n !1
m = n +1

,    0 otherwise 

 
 The corresponding block of the matrix representation of 

 

ˆ p  is of the form 
 

 

ˆ p =

0 ex0 0 0 0
ex0 0 2ex0 0 0
0 2ex0 0 3ex0 0
0 0 3ex0 0 2ex0

0 0 0 2ex0 0

! 

" 

# 
# 
# 
# 
# # 

$ 
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& 
& 
& 
& 
& & 

 

 
(b) The dipole interaction has the form 
 

 
! p̂Ê = ex0 b̂

† + b̂( )E0 â† + â( ) = !g b̂†â† + b̂†â + b̂â† + b̂â( ) = !g b̂†â + b̂â†( ) , 
 

 where   

 

!g = !ex0E0  and we keep only energy conserving terms.  The atom-field 
Hamiltonian is 

Ĥ = !! â†â + !!0 b̂
†b̂ + !g b̂†â + b̂â†( ) , 

  
 where we have chosen the energy zero point at   

 

!(! +!0 ) /2 .  The Jaynes-Cummings 
Hamiltonian is  

 Ĥ = !! â†â + !! 0 "̂ z / 2 + !g "̂ +
†â + "̂ #â

†( ) . 
 

 The Hamiltonians have similar stucture, containing either two-level operators !̂ z , !̂ ±  or 
oscillator creation and annihilation operators.  Both b̂†, b̂  and !̂ + , !̂ "  create/annihilate 
atomic excitations, and the operators !̂ +

†â , !̂ "â
†  and b̂†â , b̂â†  all conserve the total 

number of excitations in the atom-field system. 
 
(c) If we start the system in 

 

1osc 0 field  and note that the Hamiltonian in (b) couples this state 
to 

 

0osc 1 field  and no other, it is clear that we are dealing with a two-level system and that 
we will see unit-amplitude Rabi oscillations between the

 

1osc 0 field  and 

 

0osc 1 field  at 
frequency 

 

2g , just as in the Jaynes-Cummings model.  Thus the populations vary with time 
as 

 
Solid line: population in 

 

1osc 0 field  
Dotted line: population in 

 

0osc 1 field  
 
System goes through an entire Rabi 
oscillation in a time 

 

t = ! /g. 
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(c)

We expect to see vacuum Rabi splitting. Transmission will occur when the probe is 
resonant with transitions  

(d) Restricting to the single-excitation manifold and setting ψ 0 = a 1,1,1 + b 2,1,0 + c 1,2,0 , 
the relevant eigenvalue problem is

0 g g
g 0 0
g 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 0 ×

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⇒

gb + gc = 0
ga = 0

a 2 + b 2 + c 2 = 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

From this we seee that ψ 0 = 1
2
2,1,0 − 2,1,0( ) is a solution.

The probe has to add a photon to the cavity and theerfore can only couple the ground state 
1,1,0  to excited states that have an admixture of 1,1,1 , i. e., the transition 1,1,0 → ψ 0

is forbidden  and we do not see transmission at ω p =ω .  The transmission spectrum thus
looks like the single atom case, but with a vacuum Rabi splitting that is a factor of 2  
larger.  

Note: It is straighforward to find the other two states in the single-excitation manifold, 

ψ ± = 1
2 ± 1,1,1 + 1

2 2,1,0 + 1
2 1,2,0( )

These states have a 1,1,1  component and are therefore coupled to the 1,1,0  state 
by the probe.  This confirms that we will still see transmission at ω p =ω ± 2g .

1,1,0


