OPTI 544: Homework Set \#9
 Posted April 21, Due May 1.

I

A Cs atom with transition wavelength $\lambda=852 \mathrm{~nm}$ and excited state decay rate $A_{21}=3.28 \times 10^{7} / \mathrm{s}$ is trapped at an antinode of the field in a resonant optical cavity with length $l=100 \mu \mathrm{~m}$ and effective cross sectional area $A=\pi(2 \mu m)^{2}$. We assume the field polarization is parallel to the electric dipole matrix element, and that the cavity mirrors are perfect, lossless reflectors.
(a) Calculate the vacuum Rabi frequency g and compare to A_{21}. Is the system in a regime that permits the observation of coherent vacuum Rabi oscillations?
(b) A weak probe beam is passed through the cavity. Sketch the transmission as the probe frequency ω is tuned around the atom/cavity resonance frequency ω_{0}. What phenomenon are you seeing?

II

In the following, consider a normal mode of the electromagnetic field in a cavity that contains two identical 2 -level atoms. For simplicity we assume the cavity mode is resonant with the atomic transition frequency, $\omega=\omega_{21}$, and that the interaction strength g is the same for both atoms.
(a) Write down the single-mode, two-atom Jaynes-Cummings Hamiltonian in terms of creation and annihilation operators for the field, and atomic operators $\hat{\sigma}_{ \pm, z}^{(i)}$, where the index $i=1,2$ refers to the two atoms.
(b) The Hamiltonian from (a) has the form $\hat{H}=\hat{H}_{0}+\hat{H}_{A F}$. Use the notation $|j, k, n\rangle$ for the eigenstates of \hat{H}_{0}, where j, k are the states of the first and second atom and n is the photon number, respectively. Find the eigenvalues λ and $\lambda_{q}, q=0, \pm 1$ of \hat{H} corresponding to coupled atom-cavity states that have zero or one quantum of excitation, respectively. Then draw a level diagram showing the dressed-state energies for the zero- and one-excitation parts of the two-atom Jaynes-Cummings ladder.
(c) Sketch the expected transmission of a weak probe beam through the coupled atom-cavity system as the probe frequency is tuned from well below to well above the cavity mode frequency ω. No formal calculation is required; rely instead on your physical intuition and your results in (b).
(d) Returning to (c), find the eigenstate associated with the eigenvalue λ_{0} in the singleexcitation manifold. Based on your result, how might you revise your sketch from (d)?

