
OPTI 544 Solution Set 7, Spring 2022 
 
Problem 1 
 
(a) From the Notes/Slides “Quantum Electrodynamics” we have the classical Hamiltonian 

and Lagrangian,  
 

 

 

 

 
 The Lagrange Equation of motion is 
 

 

 
(b) The normal mode expansion of the field is    

Substitute in the wave equation 
 

   

 

This must hold independently for each .  Using  we have  

  
 
This is identical to the result from using the Lagrange formalism in (a) above.  Thus, the 
Lagrangian and the wave equation have the same dynamical eigenmodes governed by the 
same equations of motion, the two must be equivalent.  That in turn tells us that we have 
found the correct Lagrangian. 
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Problem 2 

 
(a) We have standing wave modes, and for mode j we have 
 

, 

, 

 

  where  . 

 
Note:  These are the fields in the Schrödinger picture, i. e., no time dependence in the 
operators.  In this problem we will stick with same-time commutators, but it is 
straightforward to substitute  to get commutators and uncertainty 
relations that involve the fields at different times. 
 
Commutator: (for simplicity we omit the mode index j, observables for different j 

always commute) 
 

    

 

  

 
 where in the last step we have used .  Thus the field operators are non-

commuting except where  and/or  is at a node for  and/or . 
 
(b) The uncertainty product is related to the commutator as  
 
 

 

 
 
 Note:  The uncertainty product depends on the positions where the fields are measured. 

Clearly it can be zero if  and/or , but that does not pose a 
contradiction since a measurement at a node of the normal mode standing wave gives no 
information about the field. 
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Problem 3 
  
(a) We can write the input as   

 
 

 Substituting  and  we get 
 

  

                

   

           
 

(b) The output is a superposition of number states with various combinations of photon 
numbers in each port.  The probability of a coincidence detection is the sum of the 
probability amplitudes squared for all the states that have at least one photon in each port.  
This gives us  

 

  takes on a maximum value of  at 

we have . .   For  

 
    Sketch:     
  
 
 
 
 
 
 
 
 

Note:  To check for two-photon admixture we could just 
input a single pulse through one port, 
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