## Note: In the following you may make use of prior results from lectures and homework whenever possible and without rederiving them, provided that you acknowledge the source.

## I

In a Homework Problem we studied a laser designed around a 4-level gain medium with lasing wavelength $\lambda$ and atom density $N$, uniformly distributed throughout a cavity with length $L$ and cross sectional area $A$. The mirror reflectivities were $R_{1}=1$ and $R_{2}<1$, and there were no other losses besides transmission through the output coupler. We found an expression for the threshold inversion $\Delta N_{t}$ and calculated that for the given parameters $\Delta N_{t} / N \sim 10^{-5}$.

Here we consider the behavior of the same laser for a different hierarchy of pumping and decay rates, i . e., $P \gg \Gamma_{21}, \Gamma_{10}$, while $\Gamma_{10}$ and $\Gamma_{21}$ are of the same order.
(a) Write down an expression for the steady state inversion $\Delta N$ present in the gain medium in terms of $P, \Gamma_{21}, \Gamma_{10}$ and $\sigma \phi$, valid for any values of these rates. From this, find a simpler approximate expression for $\Delta N$ when $P \gg \Gamma_{21}, \Gamma_{10}$. (5\%)
(b) Based on (a) and assuming $N / \Delta N_{t} \gg 1$, find an expression for the intracavity photon flux $\phi$ when the laser is operated far above threshold. Given this, how do you expect the laser output power to scale with the pump rate $P$ ? ( $10 \%$ )
(c) Now assume you can control the decay rate $\Gamma_{10}$. Find an expression for the output power $P_{\text {out }}$. Then draw a sketch showing $P_{\text {out }}$ as function of $\Gamma_{10}$, keeping everything else constant. (10\%)
(d) In HeNe lasers the decay $|1\rangle \rightarrow|0\rangle$ occurs when atoms diffuse out of the lasing mode and strike the wall of the discharge tube. As result $\Gamma_{10}=\eta / A$, where $\eta$ is some constant. Also, the upper lasing level is metastable, $\Gamma_{21} \sim 0$. In that case, how does $P_{\text {out }}$ scale with $A$ ? In this situation, how might we go about increasing the output power? Hint: $g_{t}=\left(1-R_{2}\right) / 2 L \quad(15 \%)$

## II

Consider in the following a 4-port beamsplitter with transmission and reflection coefficient $t=1 / \sqrt{2}$ and $r=i / \sqrt{2}$.
(a) Let the input be $\left|\Psi_{i n}\right\rangle=\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$, i. e. a product of coherent states in port 1 and 2. Write down an expression for the output state $\left|\Psi_{\text {out }}\right\rangle$, showing that it is a product of coherent states $\left|\alpha_{3}\right\rangle$ and $\left|\alpha_{4}\right\rangle$ in ports 3 and 4 , and giving expressions for $\alpha_{3}, \alpha_{4}$ in terms of $\alpha_{1}, \alpha_{2}$. (5\%)
(b) We measure a signal $\hat{S}=\hat{N}_{4}-\hat{N}_{3}$ at the output. Write down expressions for $\langle\hat{S}\rangle$ in terms of $\alpha_{3}, \alpha_{4}$ as well as $\alpha_{1}, \alpha_{2}$. (5\%)

A lengthy but straightforward calculation shows that $\Delta S^{2}=\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=\left|\alpha_{3}\right|^{2}+\left|\alpha_{4}\right|^{2}$. This is (not surprisingly) the shot noise for a mean photon number $\bar{n}=\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=\left|\alpha_{3}\right|^{2}+\left|\alpha_{4}\right|^{2}$.
(c) Now let $\alpha_{1}=\beta, \alpha_{2}=\beta e^{i \varphi} \sim \beta(1+i \varphi)$, where $\varphi$ is real-valued and $\ll 1$. Find expressions for $\langle\hat{S}\rangle$ and $\Delta S^{2}$, keeping only terms to leading order in $\varphi$. (10\%)
(d) Find the sensitivity with which the differential phase $\varphi$ can be measured. By definition, the sensitivity is determined as the smallest value of a given parameter for which the resulting signal $|\hat{S}| \geq \Delta S .(10 \%)$

## III

In this problem we explore a quantum version of the electron oscillator model, i. e. an atom where the internal motion of the electron relative to the nucleus is described by a one-dimensional quantum mechanical harmonic oscillator, rather than the classical harmonic oscillator used in the Lorentz model. This quantum electron oscillator has frequency $\omega_{0}$, creation and annihilation operators $\hat{b}$ and $\hat{b}^{+}$, position $\hat{x}=x_{0}\left(\hat{b}+\hat{b}^{+}\right)$, and dipole $\hat{p}=e \hat{x}$, where $e$ is the electron charge.
(a) Consider the dipole matrix elements $p_{q, q}=\left\langle q^{\prime}\right| \hat{p}|q\rangle$ between electron oscillator states with $q$ and $q^{\prime}$ quanta of excitation. What are the selection rules for electric-dipole transitions between the oscillator states, i. e. which $p_{q ; q}$ are zero and which are non-zero? ( $10 \%$ )

We put the quantum electron oscillator inside an optical cavity, where it interacts with a single quantized mode of the electromagnetic field having frequency $\omega$, photon creation and annihilation operators $\hat{a}$ and $\hat{a}^{+}$, and electric field $\hat{E}=E_{0}\left(\hat{a}+\hat{a}^{+}\right)$. For simplicity, we assume the electric field is parallel to the electron oscillator motion, and define the characteristic interaction strength $\hbar g=-e x_{0} E_{0}$.
(b) Write down the Hamiltonian for the system, including the energy of the electromagnetic field, the energy of the electron oscillator, and the electric-dipole interaction. Compare to the JaynesCummings Hamiltonian for a two-level atom coupled to a quantized mode of the electromagnetic field. (10\%)
(c) Now assume $\omega=\omega_{0}$. Based on what you found in (b), what do you expect will happen if the system at $t=0$ has one quantum of excitation in the electron oscillator, and zero quanta of excitation in the field? Sketch the populations of the states $\left|q_{o s c}=1\right\rangle\left|n_{\text {field }}=0\right\rangle$ and $\left|q_{\text {osc }}=0\right\rangle\left|n_{\text {field }}=1\right\rangle$ as function of time. ( $10 \%$ )

