Raman Coupling in 3-level Atoms

Raman Coupling in 3-Level Systems

Consider an atom with this 3-level structure

For simplicity we set $E_{1}=E_{3}$ (no loss of generality)
Fields $\left\{\begin{array}{l}\text { at } \omega, \text { coupling }|1\rangle,|2\rangle w / \text { Rabi freq. } X_{1} \\ \text { at } \omega+\delta, \text { coupling }|3\rangle,|2\rangle w / \text { Rabi freq. } X_{2}\end{array}\right.$

The Hamiltonian for this system is (X_{1}, X_{2} real)

$$
H=\hbar\left(\begin{array}{ccc}
0 & x_{1}(t) & 0 \\
x_{1}(t) & \omega_{0} & x_{2}(t) \\
0 & x_{2}(t) & 0
\end{array}\right)
$$

$$
\begin{aligned}
& X_{1}(t)=\frac{X_{1}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) \\
& X_{2}(t)=\frac{X_{2}}{2}\left(e^{i(\omega+d) t}+e^{-i(\omega+\delta) t}\right)
\end{aligned}
$$

Setting $|\psi(t)\rangle=a_{1}(t)|1\rangle+a_{2}(t)|2\rangle+a_{3}(t)|3\rangle$ we get a S.E.

$$
\begin{aligned}
\dot{a}_{1}= & -i \frac{x_{1}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) a_{2} \\
\dot{a}_{2}= & -i \omega_{0} a_{2}-i \frac{x_{1}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) a_{1} \\
& -i \frac{x_{2}}{2}\left(e^{i(\omega t \partial) t}+e^{-i(\omega t d) t}\right) a_{3} \\
\dot{a}_{3}= & -i \frac{x_{2}}{2}\left(e^{i(\omega+\partial) t}+e^{-i(\omega+d) t}\right) a_{2}
\end{aligned}
$$

Ramen Coupling in 3-level Atoms

The Hamiltonian for this system is $\left(X_{1}, X_{2}\right.$ real)

$$
H=\hbar\left(\begin{array}{ccc}
0 & x_{1}(t) & 0 \\
x_{1}(t) & \omega_{0} & x_{2}(t) \\
0 & x_{2}(t) & 0
\end{array}\right)
$$

$$
\begin{aligned}
& X_{1}(t)=\frac{X_{1}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) \\
& X_{2}(t)=\frac{X_{2}}{2}\left(e^{i(\omega+d) t}+e^{-i(\omega+\delta) t}\right)
\end{aligned}
$$

Setting $|\psi(t)\rangle=a_{1}(t)[1\rangle+a_{2}(t)|2\rangle+a_{3}(t)|3\rangle$ we get a S.E.

$$
\begin{aligned}
& \dot{a}_{1}=-i \frac{x_{1}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) a_{2} \\
& \dot{a}_{2}=-i \omega_{0} a_{2}-i \frac{x_{1}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) a_{1} \\
& -i \frac{x_{2}}{2}\left(e^{i(\omega t \partial) t}+e^{-i(\omega t d) t}\right) a_{3} \\
& \dot{a}_{3}=-i \frac{x_{2}}{2}\left(e^{i(\omega+\partial) t}+e^{-i(\omega+\partial) t}\right) a_{2}
\end{aligned}
$$

Rotating Wave Approximation.
Let $a_{1}=b_{1}, a_{2}=b_{2} e^{-i \omega t}, a_{3}=b_{3} e^{i \delta t}$
Plug into in S.E.

$$
\left.\begin{array}{rl}
\dot{b}_{1}= & -i \frac{x_{1}}{2}(1
\end{array}+e^{-i 2 \omega t}\right) b_{2} .
$$

Drop non-resonant terms, set $\omega_{0}-\omega=\Delta$

$$
\begin{aligned}
& \dot{b}_{1}=-i \frac{x_{1}}{2} b_{2} \\
& \dot{b}_{2}=-i \Delta b_{2}-i \frac{x_{1}}{2} b_{1}-i \frac{x_{2}}{2} b_{3} \\
& \dot{b}_{3}=-i \delta b_{3}-i \frac{x_{2}}{2} b_{2}
\end{aligned}
$$

Ramen Coupling in 3-level Atoms

Rotating Wave Approximation.
Let $a_{1}=b_{1}, a_{2}=b_{2} e^{-i \omega t}, a_{3}=b_{3} e^{i \delta t}$
Plug into in S.E.

$$
\left.\begin{array}{rl}
\dot{b}_{1}= & -i \frac{x_{1}}{2}(1
\end{array}+e^{-i 2 \omega t}\right) b_{2}, ~ \begin{aligned}
b_{2}= & -i\left(\omega_{0}-\omega\right) b_{2}-i \frac{x_{1}}{2}\left(e^{i 2 \omega t}+1\right) b_{1} \\
& -i \frac{x_{2}}{2}\left(e^{i 2(\omega+d) t}+1\right) b_{3} \\
\dot{b}_{3}= & -i \delta b_{3}-i \frac{x_{2}}{2}\left(1+e^{-i 2(\omega+d) t}\right) b_{2}
\end{aligned}
$$

Drop non-resonant terms, set $\omega_{0}-\omega=\Delta$

$$
\begin{aligned}
& \dot{b}_{1}=-i \frac{x_{1}}{2} b_{2} \\
& \dot{b}_{2}=-i \Delta b_{2}-i \frac{x_{1}}{2} b_{1}-i \frac{x_{2}}{2} b_{3} \\
& \dot{b}_{3}=-i \delta b_{3}-i \frac{x_{2}}{2} b_{2}
\end{aligned}
$$

This S.E. has no explicit time dependence Easy to solve numerically...

Now assume that $b_{2}(t=0)=0 \Rightarrow$ the atom is in the electronic ground state at $t=0$ when the fields turn on.

$$
\begin{align*}
& \Rightarrow \text { we can solve eq. for } b_{2}(t): \\
& \dot{b}_{2}(t)=-i \Delta b_{2}-i g(t), g(t)=\left(\frac{x_{1}}{2} b_{1}+\frac{x_{2}}{2} b_{3}\right) \\
& b_{2}(t)=-e^{-i \Delta t} \int_{0}^{t} i e^{i \Delta t^{\prime}} g\left(t^{\prime}\right) d t^{\prime} \leftarrow(A) \\
& =-e^{-i \Delta t}(\left[\frac{1}{\Delta} e^{i \Delta t^{\prime}} g\left(t^{\prime}\right)\right]_{0}^{t}-\underbrace{\left.\int_{0}^{t} \frac{1}{\Delta} e^{i \Delta t^{\prime}} \dot{g}\left(t^{\prime}\right) d t^{\prime}\right)} \tag{B}
\end{align*}
$$

Reminder: Integration by parts

$$
\int_{a}^{b} f(x) g(x) d x=[F(x) g(x)]_{a}^{b}-\int_{a}^{b} F(x) g^{\prime}(x) d x
$$

Raman Coupling in 3-level Atoms

We consider the relative magnitude of $(A) \&(B)$
(1) Let Rabi freqs be of the same order, $X_{1} \sim X_{2} \sim X$
(2) b_{1}, b_{3} are at most $\sim 1 \Rightarrow g(t)$ in (A) is $\sim X$
(3) In (B), the part $\frac{1}{\Delta} \dot{g}(t)=\frac{x}{\Delta}\left(\dot{b}_{1}+\dot{b}_{3}\right)$ Where \dot{b}_{1}, \dot{b}_{3} are $\sim X b_{2}$ and $b_{2} \sim \frac{x}{\Delta}$
we can solve eq. for $b_{2}(t)$:

$$
\begin{align*}
& \dot{b}_{2}(t)=-i \Delta b_{2}-i g(t), \quad g(t)=\left(\frac{x_{1}}{2} b_{1}+\frac{x_{2}}{2} b_{3}\right) \\
& b_{2}(t)=-e^{-i \Delta t} \int_{0}^{t} i e^{i \Delta t^{\prime}} g\left(t^{\prime}\right) d t^{\prime} \leftarrow(A) \tag{A}\\
& =-e^{-i \Delta t}(\left[\frac{1}{\Delta} e^{i \Delta t^{\prime}} g\left(t^{\prime}\right)\right]_{0}^{t}-\underbrace{\left.\int_{0}^{t} \frac{1}{\Delta} e^{i \Delta t^{\prime}} g\left(t^{\prime}\right) d t^{\prime}\right)}
\end{align*}
$$

We consider the relative magnitude of $(A) \&(B)$
(1) Let Rabi freqs be of the same order, $X_{1} \sim X_{2} \sim X$
(2) b_{1}, b_{3} are at most $\sim 1 \Rightarrow g(t)$ in (A) is $\sim X$
(3) In (B), the part $\frac{1}{\Delta} \dot{g}(t)=\frac{x}{\Delta}\left(\dot{b}_{1}+\dot{b}_{3}\right)$

Where \dot{b}_{1}, \dot{b}_{3} are $\sim X b_{2}$ and $b_{2} \sim \frac{X}{\Delta}$
from Rabi solutions
(4) Therefore $\frac{1}{\Delta} \dot{g}(t) \sim \frac{x^{3}}{\Delta^{2}}$ and $\frac{(B)}{(A)}=\frac{1}{\Delta} \frac{\dot{g}(t)}{g(t)} \sim \frac{x^{2}}{\Delta^{2}}$
\Rightarrow We can ignore (B) when $\Delta^{2} \gg X^{2}$

$$
\begin{aligned}
b_{2}(t) \approx & -\frac{1}{\Delta} g(t)+\frac{1}{\Delta} e^{-i \Delta t} g(0) \\
= & -\left[\frac{x_{1}}{2 \Delta} b_{1}(t)+\frac{x_{2}}{2 \Delta} b_{3}(t)\right] \\
& +e^{-i \Delta t}\left[\frac{x_{1}}{2 \Delta} b_{1}(0)+\frac{x_{2}}{2 \Delta} b_{3}(0)\right]
\end{aligned}
$$

Raman Coupling in 3-level Atoms

We consider the relative magnitude of $(A) \&(B)$
(1) Let Rabi freqs be of the same order, $X_{1} \sim X_{2} \sim X$
(2) b_{1}, b_{3} are at most $\sim 1 \Rightarrow g(t)$ in (A) is $\sim X$
(3) In (B), the part $\frac{1}{\Delta} \dot{g}(t)=\frac{x}{\Delta}\left(\dot{b}_{1}+\dot{b}_{3}\right)$ Where \dot{b}_{1}, \dot{b}_{3} are $\sim X b_{2}$ and $b_{2} \sim \frac{X}{\Delta}$
(4) Therefore $\frac{1}{\Delta} \dot{g}(t) \sim \frac{x^{3}}{\Delta^{2}}$ and $\frac{(B)}{(A)}=\frac{1}{\Delta} \frac{\dot{g}(t)}{g(t)} \sim \frac{x^{2}}{\Delta^{2}}$

We can ignore (B) when $\Delta^{2} \gg x^{2}$

$$
\begin{aligned}
b_{2}(t) \approx & -\frac{1}{\Delta} g(t)+\frac{1}{\Delta} e^{-i \Delta t} g(0) \\
= & -\left[\frac{x_{1}}{2 \Delta} b_{1}(t)+\frac{x_{2}}{2 \Delta} b_{3}(t)\right] \\
& +e^{-i \Delta t}\left[\frac{x_{1}}{2 \Delta} b_{1}(0)+\frac{x_{2}}{2 \Delta} b_{3}(0)\right]
\end{aligned}
$$

(5) Finally, the last term $\propto \frac{e^{-i \Delta t}}{\Delta}$ can be ignored because it averages to zero on the timescale on which b_{1}, b_{3} evolve.

Note:
The ground state amplitudes evolve slowly Because $X_{1} / \Delta, X_{2} / \Delta \ll 1$, while the excited state amplitude evolves fast and adiabatically follows the instantaneous values of b_{1}, b_{3}

Plug the solution for $b_{2}(t)$ into the eqs. for b_{1}, b_{3}

$$
\begin{aligned}
& \dot{b}_{1}(t)=i \frac{x_{1}^{2}}{4 \Delta} b_{1}(t)+i \frac{x_{1} x_{2}}{4 \Delta} b_{3}(t) \\
& \dot{b}_{3}(t)=-i\left(\delta-\frac{x_{2}^{2}}{4 \Delta}\right) b_{3}(t)+i \frac{x_{1} x_{2}}{4 \Delta} b_{1}(t)
\end{aligned}
$$

Raman Coupling in 3-level Atoms

(5) Finally, the last term $\propto \frac{e^{-i \Delta t}}{\Delta}$ can be ignored because it averages to zero on the timescale on which b_{1}, b_{3} evolve.

Note:

The ground state amplitudes evolve slowly Because $X_{1} / \Delta, X_{2} / \Delta \ll 1$, while the excited state amplitude evolves fast and adiabatically follows the instantaneous values of b_{1}, b_{3}

Plug the solution for $b_{2}(t)$ into the eqs. for b_{1}, b_{3}

$$
\begin{aligned}
& \dot{b}_{1}(t)=i \frac{x_{1}^{2}}{4 \Delta} b_{1}(t)+i \frac{x_{1} x_{2}}{4 \Delta} b_{3}(t) \\
& \dot{b}_{3}(t)=-i\left(\delta-\frac{x_{2}^{2}}{4 \Delta}\right) b_{3}(t)+i \frac{x_{1} x_{2}}{4 \Delta} b_{1}(t)
\end{aligned}
$$

We simplify by making a final change of variables

$$
c_{1}(t)=b_{1}(t) e^{-i \frac{x_{1}^{2}}{4 \Delta} t}, \quad c_{3}(t)=b_{3}(t) e^{-i \frac{x_{1}^{2}}{4 \Delta} t}
$$

$$
\begin{aligned}
& \dot{c}_{1}(t)=i \frac{x_{1} X_{2}}{4 \Delta} c_{3}(t) \quad \begin{array}{c}
\text { These are two-level } \\
\text { equations! }
\end{array} \\
& \dot{c}_{3}(t)=-i\left(\delta+\frac{x_{1}^{2}-x_{2}^{2}}{4 \Delta}\right) c_{3}(t)+i \frac{X_{1} X_{2}}{4 \Delta} c_{1}(t)
\end{aligned}
$$

Physical Discussion: We have an effective 2-level atom with effective Rabi Frequency and detuning.

$$
x_{e f f}=\frac{x_{1} x_{2}}{2 \Delta}, \quad \delta_{\text {eff }}=\delta+\frac{x_{1}^{2}-x_{2}^{2}}{4 \Delta}
$$

Note that $\chi_{\text {eff }} \sim X^{2} / \Delta$ while the excited state population $\mathcal{P}_{2} \sim x^{2} / \Delta^{2}$. This means that for large $X_{1} \Delta$ we can have large $\chi_{\text {eff }}$ and no opportunity for spontaneous decay.

Coherent Rabi oscillations and long lived superposition states

Raman Coupling in 3-level Atoms

We simplify by making a final change of variables

$$
\left.\begin{array}{l}
c_{1}(t)=b_{1}(t) e^{-i \frac{x_{1}^{2}}{4 \Delta} t}, c_{3}(t)=b_{3}(t) e^{-i \frac{x_{1}^{2}}{4 \Delta} t} \\
\dot{c}_{1}(t)=i \frac{x_{1} x_{2}}{4 \Delta} c_{3}(t)
\end{array} \begin{array}{c}
\text { These are two-level } \\
\text { equations! }
\end{array}\right] .
$$

Physical Discussion: We have an effective 2-level atom with effective Rabi Frequency and detuning.

$$
x_{e f f}=\frac{x_{1} x_{2}}{2 \Delta}, \quad \delta_{\text {eff }}=\delta+\frac{x_{1}^{2}-x_{2}^{2}}{4 \Delta}
$$

Note that $\chi_{\text {eff }} \sim X^{2} / \Delta$ while the excited state population $\mathbb{P}_{2} \sim X^{2} / \wedge^{2}$. This means that for large X, Δ we can have large $\chi_{\text {eff }}$ and no opportunity for spontaneous decay.

Coherent Rabi oscillations and long lived End superposition states 02-06-2023

Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom

3-level system \Rightarrow ground state shifts $\frac{x_{1}^{2}}{4 \Delta}, \frac{x_{2}^{2}}{4 \Delta}$
\Rightarrow Differential ground state shift $\frac{x_{1}^{2}-x_{2}^{2}}{4 \Delta}$
Final note: The atomic dipole $\langle\hat{k}\rangle$ will have components that match the frequency and polarization of both driving fields, with amplitudes that depend on both fields.

Non-Linear wave mixing, Breakdown of superposition principle

Raman Coupling in 3-level Atoms

Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom
 ,$-\frac{\left.\psi_{+}\right\rangle}{}\left|\psi_{+}\right\rangle$
$E_{t}=\hbar \omega_{0}+\frac{\hbar x^{2}}{4 \Delta}$
$|1\rangle \stackrel{\downarrow}{\imath} \cdot \downarrow\left|\psi_{-}\right\rangle$ $E_{-}=-\frac{\hbar x^{2}}{4 \Delta}$

3-level system \Rightarrow ground state shifts $\frac{x_{1}^{2}}{4 \Delta}, \frac{x_{2}^{2}}{4 \Delta}$
\Rightarrow Differential ground state shift $\frac{x_{1}^{2}-x_{2}^{2}}{4 \Delta}$
Final note: The atomic dipole $\langle\hat{\jmath}\rangle$ will have components that match the frequency and polarization of both driving fields, with amplitudes that depend on both fields.

Non-Linear wave mixing, Breakdown of superposition principle

Example: Velocity dependent Raman Coupling

$$
F^{\prime}=1
$$

$$
\sigma_{+}^{\sigma_{+}} \xrightarrow{\overrightarrow{k_{+}}}
$$

field freqs. in co-moving frame

velocity dependent Raman detuning

$$
\left.\begin{array}{l}
\omega_{+}=\omega+k v \\
\omega_{-}=\omega-k v
\end{array}\right\} \Rightarrow \delta=2 k v
$$

Applications:

- Doppler velocimetry
- Raman Cooling by velocity selective momentum transfer
- What if we apply a $\pi / 2$ Raman pulse?
- Atom Interferometry

