Light-Matter Interaction

Hierarchy of Sophistication:

- Classical Classical light, classical matter

- Semiclassical Classical light, quantum matter

- Quantum Quantum light, quantum matter

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Possible attitudes:

- Purist Most complete description possible
- Minimalist Quantum only when necessary

- Pragmatic Quantum or classical, based on
what is simplest and still works

Electromagnetic Field ==» Atom/Molecule/Solid

t |

OPTI 544: All of the above in turn

Motivation: We will

Develop Concepts ol(ew), v L

Develop Intuition

Classical is often adequate, sometimes accurate

A Quantum Theory has classical limits »
Identify/understand regime of validity

The Classical description is a useful starting
point for Nonlinear and Quantum Optics




Classical Theory of Light-Matter Interaction

Light-Matter Interaction

Self-consistent, fully classical description

The Electromagnetic Field: Basic Eqgs. in Sl Units

Electromagnetic Field ==» Atom/Molecule/Solid

t I

Motivation: We will

Develop Concepts oK(w), 1, XL
Develop Intuition
Classical is often adequate, sometimes accurate

A Quantum Theory has classical limits
Identify/understand regime of validity

The Classical description is a useful starting
point for Nonlinear Optics

Maxwell’s eqs.

( no free charges, currents ® dielectrics )

- 5
(i) -D = g =0 D : Dielectric displacement
(ii) 7.5 =0 g: Magnetic induction
(i) xE=- o8 L—E’: Electric field
ot
(iv) UxH= l-ﬁ 3 ﬁ: Magnetic field

(v) § = mpH+ M <= Non-magnetic » ll7l =0

A . Info about response in
i) 825 E+P | «= dipole moment density
(polarization density)




Light-Matter Interaction

The Electromagnetic Field: Basic Eqgs. in Sl Units

Maxwell’s eqs.

( no free charges, currents ® dielectrics )

- -
(i) 2-D = g =0 D : Dielectric displacement
(ii) V,E =0 g: Magnetic induction
(i) UxE=- __-'-.2 E; Electric field
ot
(iv) OxH = ?_ﬁq-? E’: Magnetic field

We need equations that describe:

- the behavior of E for given ©

- the medium response © for given E

Wave Equation:

Material Response:

- >

v) 3 = moH+ M | 4= Non-magnetic & M =0
Info about response in
<= dipole moment density
(polarization density)

1

(vi) 5=£E+P

0

Take curl of (iii), then use (iv)
28

Vx(Vx E) == Vx5 =

_d ey O'D
ab_lea) o

Next, use the identity
Vx (V2 E)=p (0 B)- 9B

to obtain D=v(v.E)=- )

o5

. > =1
Finally, let D=2 £+ p and use 8,/‘» by

to obtain

-VWENVE: RS Er e

This is the Wave Equation, still exact in this form
3



Light-Matter Interaction

We need equations that describe:

- the behavior of E for given ©

- the medium response © for given B

Wave Equation:

Take curl of (iii), then use (iv)

.|

2 ag__ _
VX(V" E)——an._f-:— [an)- 2‘62_

Next, use the identity
Vx(VxE)=p(v-B)- VLB

- Y
to obtain D=9(v.E) = éj
( Mo per

Finally, let 5= £°§+ 5’ and use 8,/"» = —

to obtain

- aie 1 b"‘P
"VWENVIE: G tEn B

This is the Wave Equation, still exact in this form

Transverse Fields

-
Definition: a field for which V-E =0
is Transverse

.

Example: a plane wave, E.['V"é) = E(e) ',
where EH—LLT{’, is transverse.
The physical field is Re [E (7 £)]

For transverse fields the wave equation
simplifies to

> _1 2%
5-033

ﬁ:l%

-
ViE- 5

This version of the wave equation can be a
poor approximation in non-isotropic media!



Light-Matter Interaction

Transverse Fields

-
Definition: a field for which V- E =0
is Transverse

.
k.r

Example: a plane wave, E{F'é) = E[-g)e' v,

where E[i—)_l'f{’, is transverse.
The physical field is Re [E (4]

For transverse fields the wave equation
simplifies to

22 13t 1 2
VEc’-AfE cag

This version of the wave equation can be a
poor approximation in non-isotropic media!

Isotropic Media

-
Absent a preferred direction, the indt_;_‘ced P
must be parallel to the driving field E

Linear response, most general case:

Dit) = &, Elt)+ Plt)
N t

= EoEl'é)-\-éofd-é'R[-f-t')E[{')
-0

where the response function R(¢-1') is a scalar
and we have R(T)=0 for T<O

Take divergence on both sides and use M.E. (i)

- t
VOl =8 Z-Bw)te, [ db' Rit-t1).Elw)=0
~o0
.ot 3
» v EW=-| ds'rit-¢)V-E¥) forall £
~

It follows that -E(£)= 0 forall £,
OR RIT)=-L19[T)



Light-Matter Interaction

Isotropic Media

-
Absent a preferred direction, the indg_ged |
must be parallel to the driving field E

Linear response, most general case:

o) = £o€l£)+ PLL)
. t

= gaEl£)+£ofd£'r<’&-t')E(£')
-00

where the response function R(¢-1') is a scalar
and we have R(T)=0 for TKO

Take divergence on both sides and use M.E. (i)
- +

vOlt)=s V- Ew)te, [ db' Rit-1) 9. E)=0
~o0

= —b =
and ¥ E(£)=~f dt' Rt -+ )V-£(¢) forall £
~ed

It follows that -E(£)= 0 forall £,
OR RIT) =~ L4[T)

Note: if R(T)«¢ 3(T) (instantaneous response) then

t
e, dt' Rle-2)EW) = £ X ElY)
- L susceptibility

The case R([T) = -24(T) is an example of negative
susceptibility, %< 0 , which only occurs in certain
engineered metamaterials.

e

Electric fields are transverse in linear,
isotropic dielectric media

(including the vacuum)

Wave Equation in 73E - _‘1_-_'3_9: e = o
free space C 92




Light-Matter Interaction

Note: if R(T)«¢ 3(T) (instantaneous response) then

t
£, ot Rle-2)EW) = £ X EY)

-

L susceptibility

The case R[T) = -24(T) is an example of negative
susceptibility, %< 0 , which only occurs in certain

engineered metamaterials.

.

Electric fields are transverse in linear,
isotropic dielectric media

(including the vacuum)

Wave Equation in v2
free space

‘T'L
.-l"‘

p
(@

,3__
C? 2¢?

Monochromatic trial solution E(# )= E(r) SiNE

5
VIE,(PieT e B B (M -

Equation for the spatial component alone:
VE, (7 +IRPE (M =0, 1% =%
@

Plane wave solutions

Eof) = EEoe;w"', K= w/e

Optical Cavities: Here we need to solve the
wave equation subject to boundary conditions.
See, e. g., Millony & Eberly for examples such
as rectangular cavities, Fabryt-Perot etalons,
and spherical mirror resonators.




Light-Matter Interaction

Theory of Atomic Response

So far, we have a model for the field. Next, we

need a model of how the constituents of the
medium responds to the field.

This will allow us to find the polarization density

3 as function of the field E

Classical “atom” Simple model:

nucleus + electron
Lorentz Force

- & 5 =
r& r, F’:g_LE-F U?B)

origin ~ 0 if non-relativistic

Newton:
t ) -t =P o )
(i) My it = —e E(r, +)- ’-;"('ZM-L)

-

. ar - — -
(") me,dTL re,L'e} =e E(?.e .'é) t pev,(ren,il

This is a standard 2-body problem which we can
re-cast as in terms of relative and COM motion.

We define:
- Mp M
X=r =V~ m=—%""_ um
n 4 Mt M, <
D WMo Ve d M,V
R: e n'n M:m.,_m oM
M (A n n

=
X Relative coord. M Reduced mass

-
R Center-of-mass M Total mass




Light-Matter Interaction

Newton:

t e o0 -
) my s i) = e BG4 (3

€n -L)

ni

-

by
(i) me;—£ rel6)= e E(%, 4)¢ £, (T, 4]

Sub into (i), (ii) and rewrite:

This is a standard 2-body problem which we can
re-cast as in terms of relative and COM motion.

We define:
- Me M
5("-:? .—_v‘&-? m=—5"" oUm

M= ch.-r-m“ vm,

-y
X Relative coord. M  Reduced mass
-
R Center-of-mass M Total mass

Basic result, no approximations !

Milloni & Eberly,
main text

Set 6%?“" , Xt

ewn
Throw away eq. for @

Electric Dipole approximation

Atomic dimensions Optical Wavelength

(2]~ 18 & A~ 10YA4




Sub into (i), (ii) and rewrite:

Light-Matter Interaction

[ (lQ-f- ?-I:

dtl

)- E[R- -—xt)]

5‘: -._.[E(m- "2{)+E("’ m‘x-b)]

Eé,.b() fjl' (m”- wk)dﬁp_ a

EDA: the field is nearly constant on the
scale of an atom

Good approximation: 15t order expansion in X

Basic result, no approximations !

Milloni & Eberly, Set R« Y, X ?év.
main text Throw away eq. for

Electric Dipole approximation

R

-
E(4-227 ¢)x B(da) —%ﬁ(?' v)E (@)
5(75*,%9 2,4) E(d+)+ [x v)E(dw))

Keeping only terms to leading order in |X|
the egs. of motion then take the simple form

Atomic dimensions Optical Wavelength

(%]~ 18 &«

A~ lo"‘é

M«Q{—\Q =e (R 9)EZt) com

) - 3 =
ng?z X :e,E(le,-&)er Fé” (?) Rel. Coord.

10




Light-Matter Interaction

EDA: the field is nearly constant on the
scale of an atom

Good approximation: 1%t order expansion in X'

=
E(R-22% ¢)x E(Ls) -2 (3. 7) E e
E(Fe%%q 2‘;{)@ E(E(-(—]-F% [X-0)E(dw))

Physical Interpretation:

,‘r." =eX : electric dipole moment of the atom

If we define: V(R @ +)=- T E (Rt

"
I

electric-dipole interaction energy

then the Eqs. of Motion can be recast as

Keeping only terms to leading order in |X]|
the Eqgs. of Motion then take the simple form

Mﬁl—ﬂ =e (R 9)El@L) com

dtt

y 9 =
mg?z x :e,a(le,-[:)—r Fé"CB?) Rel. Coord.

Mgezn" (-P)ERE) = F= -V, V(X € +)

ma‘%? e E(@u)+ R, (D)=~ V(R E4)

Note: The COM Eq. is the foundation for a range
of laser Atom Traps and Optical Tweezers. We will
not explore this further in OPTI 544 lectures, but
good review articles can be found in the published
literature.

11




Light-Matter Interaction

Physical Interpretation:

,i," =eX : electric dipole moment of the atom

If we define: V(R & +)=- 76'\ E (Rt

i

electric-dipole interaction energy

then the Egs. of Motion can be recast as

dt 2o ElR4) = F= X 2
M;;z'z"' ({-P)ELRE) = F= -V, V(X € +)

-l

ma.ﬂli;? e E(@e)+ R, ()= - V(F 8 4)

The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

=>
. e
n o~ TR = _ 2
Ren = Mf’i’o X
resonance frequency
origin

This is meant as a model of the atomic response,
not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a

Note: The COM Eq. is the foundation for a range
of laser Atom Traps and Optical Tweezers. We will
not explore this further in OPTI 544 lectures, but

good review articles can be found in the published
literature.

point-like nucleus and a spherical electron cloud

Electron cloud Force from charge inside 7 as if

entire charge was at the center

Force from charge outside 7 is zero
I’3
Force Foc— o< p

I"ZT

nucleus harmonic restoring force




Light-Matter Interaction

The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

>
e
n OW = - 2>
r—én - Mo})u X
resonance frequency
origin

This is meant as a model of the atomic response,
not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a
point-like nucleus and a spherical electron cloud

Electron cloud Force from charge inside 7 as if

entire charge was at the center

Force from charge outside 7 is zero

3
Force Focr—zocr

"

nucleus harmonic restoring force

—

Now substitute F,, =- mw, % into eq. for X

. . T ~5 .
Combine with P=Np, ,F: ex where N is the
number dens_il:y of atoms. This rela}.es the

macroscopic P to the microscopic ¥

Maxwell’s Equations

We now have
The Lorentz model

-

Maxwell-Lorentz Equations
We can seek self-consistent
solutions to wave propagation

13



Light-Matter Interaction

—0

Now substitute , =-mw, into eq. for X

~
I’E-" +w°x=.“.&[=_[ fé)

. . T (> - .
Combine with P=Nfi, f-eX where Nis the
number den5|ty of atoms. This relates the

macroscopic P to the microscopic ¥

Maxwell’s Equations

We now have
The Lorentz model

~-—

Maxwell-Lorentz Equations
We can seek self-consistent
solutions to wave propagation

Classical Model of Absorption & Dispersion

Maxwell’s Eqs: Oscillating dipole loses energy

®» Must include damping in Eq, of Motion

Note: In perfectly homogeneous media the
coherently scattered light from a collection of
Lorentz oscillators interferes constructively
only in the forward direction

00
80
88

2%
(@)
O O
5
(@) CDO
(0] o @)
CDOOCBO
O 0O

°8
(0@]
(@]

CBO

“«— ) —

No energy loss for a propagating field
(See note set “Classical Light-Matter”)

QM to the rescue: Part of the radiation from
guantum mechanical atoms is incoherent.

For now we add damping “by hand”



Light-Matter Interaction

Classical Model of Absorption & Dispersion

Maxwell’s Eqs: Oscillating dipole loses energy

®» Must include damping in Eq, of Motion

Note: In perfectly homogeneous media the
coherently scattered light from a collection of
Lorentz oscillators interferes constructively
only in the forward direction »

o
80
%

© (0}
@)
OOOO

OO
8

@)

0 © 00
o
o
8 o
o
o
o
s

oo
o
CBO

< ﬂ’ >

No energy loss for a propagating field
(See note set “Classical Light-Matter”)

QM to the rescue: Part of the radiation from
guantum mechanical atoms is incoherent.

For now we add damping “by hand”

The Lorentz Model with Damping

We add an ad hoc friction term w/ 2 & w),
t

damping rate

This gives us our basic equation for the atomic

response.:

d

=

- e d
X + WX = .f_"‘. E(R2)

This type of differential equation generally has
both oscillating and decaying terms. Solutions
without source terms generally decay as ¢~/*%

¥ We adopt a trial solution

Driving Field

Response

E(ﬁ &)= gEoe-ifwt-ki)

R(Rg) = B R

T

complex amplitude



Light-Matter Interaction

The Lorentz Model with Damping

We add an ad hoc friction term w/ 2« w),
t

damping rate

This gives us our basic equation for the atomic

response:

This type of differential equation generally has
both oscillating and decaying terms. Solutions
without source terms generally decay as ¢~/

® We adopt a trial solution

Driving Field

Response

R(Rt) = Btk

T

complex amplitude

!:Z_'(ﬁ £)= one-;{wt-ki)

. -~ > _ > (C/M) E.
Solution for & : a= W 2 By
Physical Quantities:

Field
Re[E(R:+)] = £, cos (we)

Dipole (?: real)
Re[f(72))= Re[eR(R4)]

P o (W-0t)cos (we-id)+ 3w Sin(ove-ke)
= ED [wo!" W)')'*quw,’

M

3]

Note: f and £ generally oscillate out of phase

WLw, » % &E in-phase
wW=wy W %l' lags E by T2
W»w, » ﬁ Lagsg by T

Best to stick with complex notation !

16



Light-Matter Interaction

. = - - (C/"'l\ Eo
Solution for & : a=-£ oo L1 8o

Physical Quantities:

Field
Re[E(R+)] = EE, cos (oe)

Dipole (E real)
Re[f(Z)]= Re[eR(R £)]

.3 ﬂ}-w*)cos (o0t-ic2)+ 280 Sin 2k
ED LJO BJ’-)-%- ‘-{p LA} R

Note: % and £ generally oscillate out of phase

wWLw, » % &E in-phase
w=w, W 1'_': lags E by T2

WP, » :ﬁ‘ Lagsg by T

Best to stick with complex notation !

Video of driven — damped harmonic oscillator

https://www.youtube.com/watch?v=aZNnwQ8HJHU

> » ©HeO ¢ = O CJ I3

Complex polarizability:

~ et e
/xt:-ex= eRom W k&J:“(w)an&r[ £-102)
) etim ot Wy-wt+2:80

“ - p :
y =0t =21000 "M (pudoppt)ty /8%0*




Light-Matter Interaction

Video of driven — damped harmonic oscillator

https://www.youtube.com/watch?v=aZNnwQ8HJHU

Complex polarizability:

— -t -~ -OJ -k"%
;E"\,_-_ eX - eoe it -] oc(W)EEoe.'[ -ted]

i etim e Wy~ + 2180
i o0t =2.a00 M (gt wb)x ‘fﬁ"'&)’

Easy to show that if E(R ¢)= £ E e '(Wtk2)
and -5::\"?1.

then the wave equation reduces to

’- ’ —
(—K‘ +=QLC,_)£ Ee =

_ LY Kixlw) <

-1 (e -12)
s, £E,e

» plane wave solutions with k= n(w) w/c
where

L w'L MD‘[W) - w,.
. hzi[ﬁ Sl Sl

f
I

Complex index of refraction




Light-Matter Interaction

- - -

Easy to show thatif E(Rt)=cE e
N =N
and P=Npu

then the wave equation reduces to

L\ ~ildt-kc2)
1. ! -
(._k‘ + c,_)a Ee =

L Upclew) e -1 (LIt -
_ Q- Nxlw (e - 1)
A LE,e

% plane wave solutions with k= n(w) c"/c
where

L W Nxlw) _ il
K== Z.I ['H" = p N L)

1H{wt-k2)

Complex Index of Refraction — Physical
discussion

Let N(w) = Nplw)+ i, ()

- W
Plane wave propagation K= ") Ve

E[E,‘f) - é‘ Eoe:-f (Wt -¥3)
=2 EOZ-ECWt"[n(w)w/c]‘%)

- é’: Eo e': n; (N,)N;—L/C e-—;N[-& —ngﬁw)&fC)

We can now identify

C .
9n-T0) < attenuation length
¢ «— phase velocity
Nalw)

19



Light-Matter Interaction

Complex Index of Refraction — Physical
discussion

Let N(w) = Nyw)ti 7. (c2)

- (A
Plane wave propagation <= "(w) Ve

Elr4)= £E o (Wt led)
_ zE e—iiw-t—-["fw)w/c']‘i)

.S S NRTL it [£-nglw)2ie)

We can now identify

C
oon,; (U)

< attenuation length

C
Nalw)

«— phase velocity

Absorption

The intensity of a plane wave field E is

T, (3)=1 nylw) &, [E(2 )1 = T o) MW
=T e:-ﬂ[“)?.‘
-

where the absorption coefficient is

Al = 205 0) . = 22 Tom [(1+"-’i‘£ii)-)"’-]

Possibility of gain?

No — there is no energy source!

20



Begin 01-23-2023 Classical Light-Matter Interaction

Absorption and Dispersion in Gases Putting it together
Approximations: Net AN
\wo-w[« w W near resonance o o @ [B
dispersive line shape
IVfw)]~ 1 weakly polarizable
Net
VIZL(NJ:'. YT, [w_ ﬂy_* o
Let w:'—w’- = (o, o) (w,~ev Y 2 (W) w) 0 b-e) ™t p
— Lorentzian line shape
o) = eYm _ eYimw
W:""O"-iv' W %"W";p General behavior:
et G-+ "y (@) | m(0) |
- me (G% —N)L + F’- /\ dispersion | ' : absorption ‘
Furthermore WEISTERRRRRER R 5°Y SRR I . '
Noxlew) . .
Ny = 4+ s = 1+8,8«1
o L 4
Expand to 15t order (1*-23'(2 C 1+ fé 10 s 0 5
(w-w,)/B




Classical Light-Matter Interaction

Putting it together

Nelt W~
$E, M0 (L el Ia’

dispersive line shape

nacw) =1f

v
NOE e '@:. 3
4&,m0 Ly o) -P/B

Lorentzian line shape

General behavior:

ne (@)

n (o)

/\ dispersion | |  absorption
"

-10 -5

10

dispersion o<

Note: for (W,-e)

(W~ > 3

absorption cc :
(0v,-c)

®» We can have loss-less dispersive media

Note: If we introduce the detuning A= [wo-w)
we can rewrite naCbJ), M:E(NJ as

LNt A
ﬂg[AX"lf‘qgomw A’--[-(ﬁz
Ne 8

15 (8)= tg,mw A-+B%

From the above we see that

C

elwiKL for Q> w, » 7o)
.t

»C

Superluminal propagation?

22



Classical Light-Matter Interaction

i
(No"”) for

1 (W] 2
(0,-e0)}

dispersion o<

Note:

absorption cc

5 We can have loss-less dispersive media

Note: If we introduce the detuning A= [wo-w)
we can rewrite nﬂcw), Vlmfln') as

(A)=1+ ve. 4
" $E,mw A"'I’ﬁz
Nelt 8
n{8) =
24 tg,mu At+A

From the above we see that

C

Ne(w)KL for LW, ®» 7]
n

»C

Superluminal propagation?

Free Electrons

Consider the limit &) > @,

®» effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have

el/m et
) ot s

) \/ \/ 35’
_ .[._ _ = [1.
i) = \/1 1 i w'_ —

We introduce the . 0= Net
Plasma Frequency ° p- £m

23




Classical Light-Matter Interaction

Free Electrons

Consider the limit &) > w,

© effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have

O(.((A)) = ez/m v et
Wi-wl-1gw T MW

N(x Net W
- {._lz N e - i
alw) = /1 :, V1 Py =)/ o

_ /Me‘
Wp* £,m

We introduce the .
Plasma Frequency *

wo« W &« DJP

Let Nlw) purely imaginary

lwb-wl»{g - but no loss!

We now have

E@t- 25
< £E, &t o (MWt -1

=§»Ebe-,wte—btw)2-

]
where b[:.;): —é‘/w‘— Wy

Reflection at surface,
penetration depth v i/b[w)

é-?w[i-n[w)i/c]

24



Examples of this kind of medium includes plasmas, and metals such as aluminum,
silver and gold which are known to be excellent mirrors for visible and IR
radiation.



