Density Matrix Description of 2-Level Atoms

Mental Warmup: What is a probability? Quincunx
. Size: 6
(1) Example: Coin toss Left/Right: 50% / 50%
— We can describe physical states by Rpsecs 33
probability distributions ' -
— Probabilities are assigned based on o

prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

— We can describe physical states by
probability distributions 1

— Probabilities are assigned based on o 1 2 3 4 5 6

prior knowledge, updated when

additional info becomes available Note: We might do a coin flip to choose the

Quincunx configuration (e. g., size)
— As such, probability distributions are
subjective ( states of knowledge) ‘-'

This is the Bayesian Probability distribution over
Interpretation of Probability probability distributions !
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Quincunx
Size: 6
Left/Right: 50% / 50%
Speed: 33
| »
o
1
0 1 2 3 4 5 6

Note: We might do a coin flip to choose the
Quincunx configuration (e. g., size)

—_-

Probability distribution over
probability distributions !

(3) Example: Quantum Quincunx

— We can describe physical states by
guantum wavefunctions (state vectors)

— Quantum states are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, quantum states are
subjective ( states of knowledge)

(4) Mixed Quantum & Classical Case

— We can easily envision a hybrid Quincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations
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(3) Example: Quantum Quincunx (5) Example: Quantum Trajectories

— Ensemble of 2-level atoms undergoing

— We can describe physical states by Rabi oscillation with random decays

guantum wavefunctions (state vectors)

— Quantum states are assigned based on P Atom #1 R Atom #2 P Atom #3 ...
prior knowledge, updated when N A A
additional info becomes available
— As such, quantum states are /EA/J § / \ f% / /gf%/\
subjective ( states of knowledge) > — = - >
(4) Mixed Quantum & Classical Case {ig_ Average

— We can easily envision a hybrid Quincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations

B

Definition: A system for which we know only
the probabilities 41y, of finding the system in

state (1, is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state




Density Matrix Description of 2-Level Atoms

(5) Example: Quantum Trajectories Definition: Density Operator for pure states
— Ensemble of 2-level atoms undergoing =
Rabi oscillation with random decays Q“) ) X UCE|

h  Atom#1 A Atom#2 R Atom #3 ...
) ] f Definition: Density Matrix

/ éﬂ/gf _AM /i/\ i/\ 1310 = 2 G0 14,> »
-

Con [4) = <Ml OB | M, = Col) Cf )

109‘ Average

A
Definition: Density Operator for mixed states

Q) = % Ma ), G =12, (O Ky )|

v

Note: A pure state is just a mixed state for
which one 4l =1 and the rest are zero.

Definition: A system for which we know only

the probabilities 41y, of finding the system in

state (1, ) is said to be in a statistical mixture ] ] ]
of states. Shorthand: mixed state. The terms Density Operator and Density Matrix

are used interchangeably

Shorthand for non-mixed state: pure state
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Definition: Density Operator for pure states

QW) = 14 ) X U(E)|

Definition: Density Matrix
Iy )y = z;_c,,u)wp o
Cpn [4) =Ml OB [ M, = Col) G H)

Let A be an observable w/eigenvalues O,

Let Q, be the projector on the eigen-subspace of O,

For a pure state, Q(£) = | {+) X y(L)| , we have

Definition: Density Operator for mixed states

o) = % Mo Qult) G = (4, (O Kagg ()|

Note: A pure state is just a mixed state for
which one 4lp =1 and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

(%) Tr Q)= Q)= I, =1
(%) {AY= oAl =Z<’¢H-E)IA LX)
-Z<M |68 4 up -Z< wletwalu

-7;‘ g(-[—?;ﬂ] ”MP> basis in Qf)

(%) Let ©, be the projectcr on eigensubspace of QA

P,) =818, [ty =Tr[g®)L,]

(%) é[g:l'zp(llxzp(ﬂ[-rl‘lfta)(ﬁéﬁ
= & HIBEL)XYkt) [-— o e H

:f:l{% Hgl
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Let A be an observable w/eigenvalues 0,

Let 1:3. be the projector on the eigen-subspace of O,

For a pure state, Q(£) = | {+) X 4(£)| , we have

(%) Tr Q&)= Zg,,,lce Zlc t=1

() (AY=Cpla)lA Tz Z@mm X 4D
-Z<M PIESCE up> -—Z< nlotoaluy
-’F [gt0A] (> basisin n %)

(%) Let ﬂ be the projector on eigensubspace of & ,

Per,) = <418, 1ty =Tr[Qt8, ]

(%) ém- l'zpl'{—lxzp(ﬂl-rl‘lfta)(lﬁéﬂ
= ~Hmz+)xuw[~ f‘lf(é)th&E)[H

=i [Hg]

Let A be an observable w/eigenvalues 0,

Let ), be the projector on the eigen-subspace of Q,,

For a mixed state, Q(+) = ng& ) s €=U, (4K Yg (£)]

(%) Trolt) = %m'rpg&cﬂ =4
(%) <A =.Z: IXOAB LA % (R THQUORT

="Ir[@®)AT

(%) Let £, be the projector on eigensubspace ofa,

Pla,) -"—%m%(ﬁ)l P I, 10 = Te[QHIP)]

() QU = >y (IuEEX 6L+ 1pAeoCuig
[
=th& -7 (HUMEAXp0)] - et | H)

-1 Density Operator
"TE [H'?] formalism is general !

6
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Let A be an observable w/eigenvalues 0,

Let F,f, be the projector on the eigen-subspace of O,

For a mixed state, Q(+) :Z&m Qplt) » G =Yy (t)XYg (4)]

(%) Tro(t) = %zma'_l?‘g&(-ﬂ =4
(%) <A %‘ IXOAB LA % e TrlG O]

="Ir[®)A]

(%) Let Q, be the projector on eigensubspace of G ,

P,) :%/m(zﬁ(ﬂl D[4,y = Tr[QHIR ]

() QU= >y (X yee) -+ 1pdeocyig)
[
=th& -7 (HTHa X~ etenoget) H)

Density Operator
formalism is general !

-1
- e [H.?]

Important properties of the Density Operator

(1) QisHermitian, Q"=€ W © is an observable

® 3 basis in which © is diagonal

In this basis a pure state has one
diagonal element =1, therest=0

(2) Test for purity.
Pure: Gg'=Q ® Tre: =1
1

e
Mixed: ©*%+Q % T g«

(3) Schrodinger evolution does not change the Ay

{ ‘T?'g" is conserved

pure states stay pure

mixed states stay mixed

Changing pure % mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D,; & E;;,
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A cooks recipe — interpretations of ©

Important properties of the Density Operator

(1) QisHermitian, Q“=€ B © is an observable

®» J basis in which ¢ is diagonal

In this basis a pure state has one
diagonal element =1, therest=0

(2) Test for purity.
Pure: Gg':Q ®» Trel =1

e
Mixed: 9"#9 e ‘T?g‘<1_

(3) Schrodinger evolution does not change the A

Tr g‘“ is conserved
E pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E;;,

Step 1 Add N atoms in state [U,) to bucket A
Add N atoms in state |, to bucket B

P

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and mix

(Mixing does not affect the state of a given atom)

N x [‘L{A>

N x %>

Step 3 Pick an atom at random from bucket C

Which is
Correct?

The atom is in a pure state but we
don’t know if it is in WA> or |1,

The atom is in a mixed state

Q=7 I Xabgl +3 14X

8
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A cooks recipe — interpretations of ©

Step 1 Add N atoms in state [U,) to bucket A
Add N atoms in state |V, to bucket B

P

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and mix

(Mixing does not affect the state of a given atom)

N = [uﬂ> N x “LB>

Step 3 Pick an atom at random from bucket C

The atom is in a pure state but we
Which is don’t know if it is in WA> or |1,

?
Correct: The atom is in a mixed state

Q= 3 e Xql +3 14a XY, |

There is no difference!

The two interpretations lead to identical predictions
for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions
for observable outcomes then they are identical

Loosely, (i) isa frequentist view

(ii) isa Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge
(subjective)
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There is no difference!

The two interpretations lead to identical predictions

for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions
for observable outcomes then they are identical

Loosely, (i) isa frequentist view

(ii) isa Bayesian view

Quantum Bayesianism

Begin
02-15-2023

More about the Density Matrix
Choose a basis h{&} =§c§l‘3m‘j>. We define
)

Populations:
(real-valued)

gm“: S’Ylk Clvt'acih)# ='% Ve lcf:)ll

Quantum States are States of Knowledge
(subjective)

Single system: Prob of finding state 14 %

Ensemble: |4 % occurs with freq. ©

Coherences:
(complex-valued)

Qn»(F <C‘£} C%AX%,'

Note: Defining C9_= lcq[eieﬁ we have

B, (00 , 1)
I 5= i ™o =%y <1 Michi,
ensemble average

It follows that Qe - gmam
?wpg(m $ gvm g{l-p g= . ’ .

with = for pure states Q'twn ot vax

10
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More about the Density Matrix

Choose a basis [,) =§C§M > We define
J

Populations:
(real-valued)

Single system:  Prob of finding state 14 )

Ensemble: |4 % occurs with freq. Q

Coherences:
(complex-valued)

b)¥
= <Cn

Note: Defining CQ_-.- Icq[e,ie‘b, we have

¥ S Y, OF-0RI ¢ B (R
A ¥y = e =5y c<1ePcdPi,
T— ensemble average

It follows that

G- - G
CvSpn$ CmSpp 8= | 1 .

with = for pure states Sen *°° grn

Example: 2-level atom w/random perturbations

E A
Perturbing events cause

random phase shifts 2!®

2y 12y

between states.
>t P

The ensemble average Q",ﬁl = &ch,\c’;\ e

115 W 11>

18,

is reduced by the randomly fluctuating phase

Dipole Radiation: B
d-rigi1 =T el 5]

= gn:ﬁtu'{' Qq_,’-f\n," ﬁ-RQ[@ll;ﬁ‘Ll‘—l

n

-

For an ensemble of pure states w/different &,

<’?‘> =21 %'K’& Ref‘?;({ﬂ Jf‘:ﬂ

Oscillating dipole w/phase that varies between
atoms with different perturbation history

11
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Example: 2-level atom w/random perturbations

Eq n>
1> —=. 1o Perturbing events cause
random phase shifts 2 e
15 W 11> between states.
> ¢ - -

The ensemble average g""(‘ g—"bcnc‘(‘ T

is reduced by the randomly fluctuating phase

Dipole Radiation: _
d-migh=[(g ol O]

= Qu/_ﬁuﬁp gq_,;ﬁn_: ﬁ—RQtQILJF\?—l’?

For an ensemble of pure states w/different e,

>=2 Z’(‘& R@YQM ]

Oscillating dipole w/phase that varies between
atoms with different perturbation history

Time Evolution of the Density Matrix

Challenge: We need “equations of motion” that
combine the Schrédinger Equation
with the effect of processes that can
change Tr € (measure of purity)

Approach: We do not have time for a rigorous

derivation, so will rely on plausible
arguments to justify the equations

Schrédinger Evolution: In general, we have
g =~ [He] =4 (Hg-gH)
matrix elements —J—
52 (Ha Q-8 Hin)

alz

2 populations
2-Level Atom » { Pop Qs ( } S
2 coherences

€

12
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Time Evolution of the Density Matrix

Challenge: We need “equations of motion” that
combine the Schrédinger Equation
with the effect of processes that can
change “Ir gz (measure of purity)

Approach: We do not have time for a rigorous
derivation, so will rely on plausible

gnm - —N z (H"& S’EM w& H& \

..,2_
Schrédinger Evolution: In general, we have

g =-+lHe] =-L(Hg-gH)
matrix elements —JIL—
()
M Z (Hﬂég‘jm gndem)

6"’

2 populations
2-Level Atom ) { PopP Qs C )&,
2 coherences

§(,

Consider the 2-Level Rabi problem with

H=HptV & Vy=5hkx,e e

_ _E : -~ It
Set W, =X X, =X", substitute Q, =g, e
ATslow variable
*® ~¢
(Pure state B Q=4 Gy =C, (¢, & we))

Substitute in (%), make RWA, and drop ~

s * Rabi Eqgs. for
&= ,{(X@!‘L"x ?21B pure and

. : . mixed states
Qn = :(XQ,L'-X ng)

° . D ta .
‘2&’"'691*"3{‘ (&y-21) =§:§

13
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Consider the 2-Level Rabi problem with

Next: Non-Hamiltonian evolution

H=HptV & Vy=5kx,¢ R T
1 . :
o i(Xne:'wt"‘ X;e.ueJ

H=4

5‘_()(:.10‘”[7 X! e.wq Wy,

Set X,y =X, X, = X7, substitute Q,, = éle’“t

ATslow variable
s -
(Pure state B Q,=q, Gy =C,(¢,& we))

Substitute in (%), make RWA, and drop ~

B
¢ . Rabi Egs. f
8= ( X€iy ~ X*QZIB a:)ulreq::‘ndor
® ° ,g
9!.‘). = i(XQIz"X 9,_,)

mixed states
° e . X'(* _ o IF
Q=14 Gy i 9 (@y-2,) =8y

Types of events

(i)  Elastic collisions: No change in energy

(ii)  Inelastic collisions: Atom loss

(iii) Spontaneous decay: Transition [3) <> [¢>

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,

each other free evol. of @, changed
Ep 1. ey,
1
wﬁ:l w’.p"'é&) ("’11
I R
iy " 1Y
> &

Paradigm for perturbations that do
not lead to net change in energy

14
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Next: Non-Hamiltonian evolution

Types of events

(i)  Elastic collisions: No change in energy

(ii)  Inelastic collisions: Atom loss

(iii) Spontaneous decay: Transition [3) <> [¢>

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,

each other free evol. of Q,, changed
E A > . 127
1Y
wﬂ:l w;p""éw (’"11
VIR R I
4y " 1y
> ¢

Paradigm for perturbations that do
not lead to net change in energy

Evolution of coherence (fast variables)

G -y,
> §sl8)=Q,0\c ute f ! o0t

We need the ensemble average of @ (+)

Assumptions: (&: ensemble average )

—  From atom to atom 2w () isa
Gaussian Random Variable

— Averaged over the ensemble 45&1(;5'}?&=0

— Collisions have no memory over time,

I :.2- Lt
@wméwc—f;»‘% ;Ew £
~—

Can show that,
averaged over time
and the ensemble

-~ f:dé’ me) %
&

15
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Evolution of coherence (fast variables)

collisional

QH_ = =\ [Nu +30) (1‘.\] Q, ) history

=> Qult)= ,,_(o\é;“’u'be_"" C,Owéco(—c'\

We need the ensemble average of @, ()

Assumptions: (&: ensemble average )

—  From atom to atom AW () isa
Gaussian Random Variable

— Averaged over the ensemble <5CJC:L»']?Q"-D

— Collisions have no memory over time,

<O0t) dweeyy, » %5&-03

P

+
Can show tha.t, _.lf dt’ §ere) iy

averaged over time <Q, 0 )—e

and the ensemble 2

It follows that: G, (¢) = @, (& ™" e tT

Add this decay to the equation of motion to get

ém = L‘5;11)8.!5, + C'éu)e.c,: B Gw.u - 1/'5)?)9.

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

. — 17

é'u = (éuBS.E, - rq' Qﬂ ¥>G
Qs = (Qn)s.e. —f1€y, _Qill

This is strange because Tr @ (L) is not preserved

Convenient when working with quantities

N Qﬁ) o N (/ﬁw.gu f {ﬁ‘ll@l‘l)

16
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It follows that: g,()= Q,(le it /T Effect on probability amplitudes

Populations are ensemble averages of the type
g, [4) = <(,802> =<lg (ot ye T
~-Lt
Q= (@gg t (By)g = — (iw, ~"'T)g, 0y, ) = 18,12 = L[ (0D e F

Add this decay to the equation of motion to get

When the populations decay, the averages of the

i . . s robability amplitudes must decay accordingly,
Simple Model of Inelastic Collisions P yamp y gly

. A
As modeled by, e. g., Milloni & Eberly, {la, By )=<Lla,0l>e” 2
this is a steady loss of atoms <[Q;_(6\[>=<M,_[é)(7@'- :_6'&
— 37
944 (e)se — 17 @ 4N Thus, for the coherences
Q - (6,.).. -he 5 B ()= L 0,4\, &Y > =<4, [0)0,@)*>e” at e "t
19 —
1. /5E. N
1
This is strange because Tr @(t) is not preserved This gives us elaitic ineliStic
Convenient when working with quantities
i '('Pp_

N> o N (7,8, # Thuiy) 2= (@) 0~V G- = Gy,

17
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Effect on probability amplitudes
Populations are ensemble averages of the type
g, )= 10,602 =< [ lorye T
0y, 1) = <10, = a0y e E

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

{ayey=d0,@ > e 4t
Llogely=((aane e

Thus, for the coherences

This gives us elastic inelastic
\’ v
P +h 9
Qrs." [91‘1\3 a. /f L Sy

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

125
Ay H
117

atom- field
interaction

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

(194 1105 = @, 110,117 4 4, 113,125,

Step (2) She gives atom B to Bob and asks him to
measure if it is in [Oeor l2>3 and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

9= [q4[111>AA<1J+’aill|Z>AA<2I

18
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Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

125
T
- 117

.atom-figld
interaction

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

119,117 = 0, 113,117, + 4, 125,125,
Step (2) She gives atom B to Bob and asks him to

measure if it is in [1>Gor |2>8 and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

Q= [014[2 H>AA<1I+ mz!zlz‘zm@l

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

D (o)

atom-field
interaction

125
Ay,
117

Final OPTI 544 Lectures:
fg (0)D=(39 >ﬂ® Vo¢ Doer g evolve for time ¢

5 [)=C, ,l4) li)al\/ac, >&E,+%c,|1 O, =1

excitation in the atom excitation in field mode k&

Cannot recover info in continuum of field modes

P

Probability |C, o (£)|*> of having no decay
Probability Zlchu(é)l" of having decay
®

No Coherence established between states |17 [2)

19
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Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

125
- Oy
17

atom-field
interaction

Final OPTI 544 Lectures:
f (0)D=[2 >ﬂ® Vo Yoer ®» evolve for time ¢

[el8)>=C, 1) ri.>a [Vac. >&EF+%CM D, 1= e

excitation in the atom excitation in field mode &

Cannot recover info in continuum of field modes

P

Probability |C, o (£)|* of having no decay
Probability Zlctu(é)lz of having decay
=

No Coherence established between states |17 [2)

Conclusion: Decay moves population [2) <> 11>
at rate A,,, damps coherence at rate A,,/ﬂ

914 = Ay_, Ql‘l ,

g:u - A‘ll 911
Qu = ézf

Putting it all together:

<, = ~f; @, +A9_,?12~-;—[X@,,_—X*QQ,)
éu = "ré_c?u”Au By "";: (Xgli "X*QQ.J
® . [V o 8

Q =(18~3) @+ %(gu"?u} = Q"

I A
here - —4 Y
w /3 g ¥

[0y
T

These are our desired

Density Matrix
Equations of Motion
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