Mental Warmup: What is a probability?

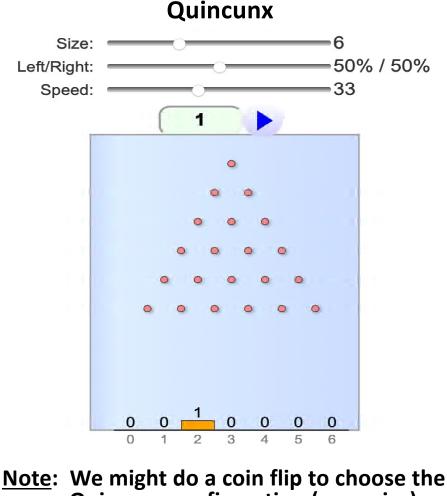
(1) Example: Coin toss

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)
- (2) Example: Quincunx

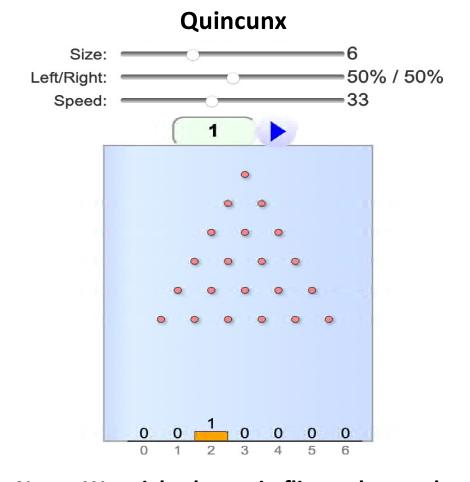
https://www.mathsisfun.com/data/quincunx.html

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

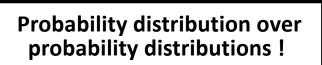
This is the Bayesian Interpretation of Probability



Probability distribution over probability distributions !



<u>Note</u>: We might do a coin flip to choose the Quincunx configuration (e. g., size)

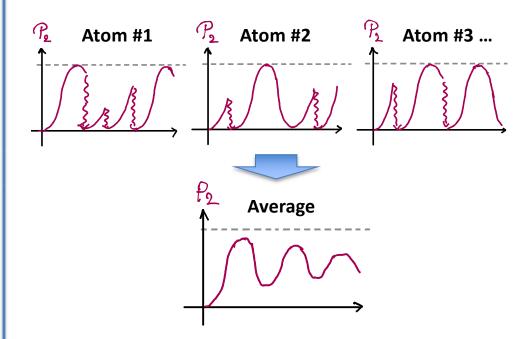


- (3) Example: Quantum Quincunx
 - We can describe physical states by quantum wavefunctions (state vectors)
 - Quantum states are assigned based on prior knowledge, updated when additional info becomes available
 - As such, quantum states are subjective (states of knowledge)
- (4) Mixed Quantum & Classical Case
 - We can easily envision a hybrid Quincunx that is part classical, part quantum.
 - Physics needs an efficient description these kinds of intermediate situations

(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)
- (4) Mixed Quantum & Classical Case
 - We can easily envision a hybrid Quincunx that is part classical, part quantum.
 - Physics needs an efficient description these kinds of intermediate situations

- (5) Example: Quantum Trajectories
 - Ensemble of 2-level atoms undergoing Rabi oscillation with random decays



Definition: A system for which we know only the probabilities η_k of finding the system in state $|\eta_k\rangle$ is said to be in a statistical mixture of states. Shorthand: <u>mixed state</u>.

Shorthand for non-mixed state: pure state

- (5) Example: Quantum Trajectories
 - Ensemble of 2-level atoms undergoing Rabi oscillation with random decays

P Atom #2	ℜ Atom #3
ŗ,	
Average	
 $\int \int \int \int dx dx$	>

Definition: A system for which we know only the probabilities η_k of finding the system in state $|\eta_k\rangle$ is said to be in a statistical mixture of states. Shorthand: <u>mixed state</u>.

Shorthand for non-mixed state: pure state

Definition: Density Operator for pure states

 $Q(t) = | \mathcal{U}(t) \times \mathcal{U}(t) |$

Definition: Density Matrix

$$|4(t)\rangle = \sum_{n} C_{n}(t) |u_{n}\rangle \Rightarrow$$

 $\mathcal{G}_{pn}(t) = \langle u_{p} | \mathcal{G}(t) | u_{n} \rangle = C_{p}(t) C_{n}^{*}(t)$

Definition: Density Operator for mixed states

$$g(t) = \sum_{k} \gamma_{k} g_{k}(t), \quad g_{k} = [\psi_{k}(t) \times \psi_{k}(t)]$$

Note: A pure state is just a mixed state for which one $n_{\beta} = 1$ and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

Definition: Density Operator for pure states

 $\mathcal{G}^{(t)} = |\mathcal{Y}(t) \times \mathcal{Y}(t)|$

Definition: Density Matrix

 $|\mathcal{U}(t)\rangle = \sum_{n} C_{n}(t) |\mathcal{U}_{n}\rangle \Rightarrow$ $\mathcal{G}_{pn}(t) = \langle \mathcal{U}_{p} | \mathcal{G}(t) |\mathcal{U}_{n}\rangle = C_{p}(t) C_{n}^{*}(t)$

Definition: Density Operator for mixed states $\mathcal{G}(t) = \sum_{k} \gamma_{k} \mathcal{G}_{k}(t), \quad \mathcal{G}_{k} = [\mathcal{U}_{k}(t) \times \mathcal{U}_{k}(t)]$ Note: A pure state is just a mixed state for which one $\gamma_{k} = 1$ and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

Let A be an observable w/eigenvalues 🗛

Let \mathbf{Q} be the projector on the eigen-subspace of $\mathbf{Q}_{\mathbf{p}}$

For a <u>pure</u> state, $Q(t) = |\psi(t) \times \psi(t)|$, we have

(*)
$$T_{r} g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*) $\langle A \rangle = \langle \psi(t) | A | \psi(t) \rangle = \sum_{p} \langle \psi(t) | A | w_{p} \rangle w_{p} | \psi(t) \rangle$
 $= \sum_{p} \langle w_{p} | \psi(t) \rangle \langle \psi(t) | A | w_{p} \rangle = \sum_{p} \langle w_{p} | g(t) A | w_{p} \rangle$
 $= T_{r} [g(t) A] \quad (|w_{p} \rangle \text{ basis in } \mathcal{H})$
(*) Let P_{n} be the projector on eigensubspace of a_{n}
 $\mathcal{P}(a_{n}) = \langle \psi(t) | P_{n} | \psi(t) \rangle = T_{r} [g(t) P_{n}]$
(*) $\hat{g}(t) = [\psi(t) \rangle \langle \psi(t) | + | \psi(t) \rangle \langle \psi(t) |$
 $= \frac{1}{16} H | \psi(t) \rangle \langle \psi(t) | - \frac{1}{16} | \psi(t) \rangle \langle \psi(t) | H$
 $= \frac{1}{16} [H, g]$

Let A be an observable w/eigenvalues $O_{\mathbf{v}}$

Let \mathbf{R} be the projector on the eigen-subspace of $\mathbf{O}_{\mathbf{N}}$

For a <u>pure</u> state, $Q(t) = |\mathcal{U}(t) \times \mathcal{U}(t)|$, we have

(*)
$$T_{V} Q(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{L} = 1$$

(*) $\langle A \rangle = \langle \psi(t) | A | \psi(t) \rangle = \sum_{p} \langle \psi(t) | A | \mu_{p} \rangle \langle \mu_{p} | \psi(t) \rangle$
 $= \sum_{p} \langle \mu_{p} | \psi(t) \rangle \langle \psi(t) | A | \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | g(t) A | \mu_{p} \rangle$
 $= T_{r} [g(t) A] \quad (|\mu_{p}\rangle \text{ basis in } \mathcal{H})$

(*) Let \mathbf{Q} be the projector on eigensubspace of $\mathbf{Q}_{\mathbf{N}}$

 $\mathcal{P}(\mathcal{R}_n) = \langle \mathcal{U}(t)|\mathcal{P}_n|\mathcal{U}(t) \rangle = \mathrm{Tr}[\mathcal{G}(t)\mathcal{P}_n]$

(*)
$$g(t) = [\psi(t) \times \psi(t)] + [\psi(t) \times \psi(t)]$$

= $\frac{1}{ik} H [\psi(t) \times \psi(t)] - \frac{1}{ik} [\psi(t) \times \psi(t)] H$
= $\frac{1}{ik} [H,g]$

Let A be an observable w/eigenvalues A_n Let P_n be the projector on the eigen-subspace of A_n

For a <u>mixed</u> state, $g(t) = \sum_{k} \gamma_{k} g_{k}(t)$, $g_{k} = [\mathcal{U}_{k}(t) \times \mathcal{U}_{k}(t)]$

(*)
$$\operatorname{Tr} g(t) = \sum_{k} \eta_{k} \operatorname{Tr} g_{k}(t) = 1$$

(*) $\langle A \rangle = \sum_{k} \eta_{k} \langle \mathcal{U}_{k}(t) | A | \mathcal{U}_{k}(t) \rangle = \sum_{k} \gamma_{k} \operatorname{Tr} [g_{k}(t) A],$
 $= \operatorname{Tr} [g(t) A]$

(*) Let P_{n} be the projector on eigensubspace of a_{n} $P(a_{n}) = \sum_{k} \gamma_{k} \langle \psi_{k}(t) | P_{n} | \psi_{k}(t) \rangle = \text{Tr}[Q(t)P_{n}]$ (*) $\hat{Q}(t) = \sum_{k} \gamma_{k} (|\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$ $= \sum_{k} \gamma_{k} (|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)|) + |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$ $= \sum_{k} \gamma_{k} (|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|) + |\psi(t) \times \psi(t)| + |\psi(t) \otimes \psi(t)| + |\psi(t)| + |\psi(t) \otimes \psi(t)| + |\psi(t)| + |\psi(t)| + |\psi(t)| +$

- Let A be an observable w/eigenvalues O_{n}
- Let \mathbf{Q} be the projector on the eigen-subspace of $\boldsymbol{Q}_{\mathbf{n}}$

For a <u>mixed</u> state, $g(t) = \sum_{k} \gamma_{k} g_{k}(t)$, $g_{k} = [\mathcal{U}_{k}(t) \times \mathcal{U}_{k}(t)]$

(*)
$$\operatorname{Tr} g(t) = \sum_{k \in \mathbb{N}_{k}} \operatorname{Tr} g_{k}(t) = 1$$

(*) $\langle A \rangle = \sum_{k \in \mathbb{N}_{k}} \gamma_{k} \langle \psi_{k}(t) | A | \psi_{k}(t) \rangle = \sum_{k \in \mathbb{N}_{k}} \gamma_{k} \operatorname{Tr} [g_{k}(t) A],$
 $= \operatorname{Tr} [g(t) A]$

(*) Let P_n be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \sum_{k} \gamma_k \langle u_k(t) | P_n | \mathcal{U}_k(t) \rangle = \text{Tr}[\mathcal{G}(t)P_n]$

(*)
$$g(t) = \sum_{k} \gamma_{k} (|\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$

$$= \sum_{k} \gamma_{k} (|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)|H)$$

$$= \frac{1}{it} [H,g]$$
Density Operator
formalism is general !

Important properties of the Density Operator

- (1) **9** is Hermitian, $g^+ = g \Rightarrow g$ is an observable
 - J basis in which g is diagonal
 In this basis a pure state has <u>one</u>
 diagonal element = 1, the rest = 0
- (2) Test for purity. Pure: $g^2 = g \Rightarrow \text{Tr } g^2 = 1$ Mixed: $g^2 \neq g \Rightarrow \text{Tr } g^2 < 1$
- (3) Schrödinger evolution does not change the n_{B}

 $\Rightarrow \begin{cases} \mathbf{Tr} g^{\mathbf{1}} \text{ is conserved} \\ \text{pure states stay pure} \\ \text{mixed states stay mixed} \end{cases}$

Changing pure
↓ mixed requires non-Hamiltonian evolution – see Cohen Tannoudji D_{III} & E_{III}

Important properties of the Density Operator

(1) *S* is Hermitian, $Q^+ = Q \Rightarrow S$ is an observable

 \Rightarrow \exists basis in which \circ is diagonal

In this basis a pure state has <u>one</u> diagonal element = 1 , the rest = 0

(2) Test for purity.

Pure: $g^2 = g \Rightarrow \text{Tr } g^2 = 1$ Mixed: $g^2 \neq g \Rightarrow \text{Tr } g^2 < 1$

(3) Schrödinger evolution does not change the M

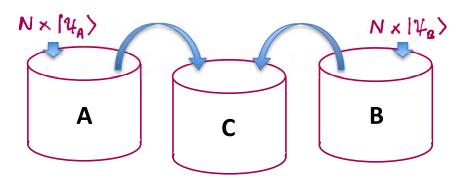
 $\Rightarrow \begin{cases} Tr g^{1} \text{ is conserved} \\ pure \text{ states stay pure} \\ mixed \text{ states stay mixed} \end{cases}$

Changing pure i mixed requires non-Hamiltonian evolution – see Cohen Tannoudji D_{III} & E_{III} A cooks recipe – interpretations of $\boldsymbol{\mathcal{S}}$

Step 1 Add N atoms in state $|\mathcal{U}_{A}\rangle$ to bucket A Add N atoms in state $|\mathcal{U}_{B}\rangle$ to bucket B

We now have two ensembles, each of which consist of *N* atoms in a known pure state

Step 2 Add buckets A and B to bucket C and mix (Mixing does not affect the state of a given atom)



Step 3 Pick an atom at random from bucket C

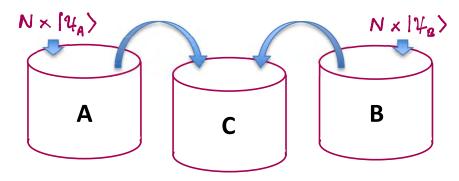
Which is Correct? The atom is in a pure state but we don't know if it is in $|\mathcal{U}_A\rangle$ or $|\mathcal{U}_B\rangle$ The atom is in a mixed state $g = \frac{1}{2} |\mathcal{U}_B \times \mathcal{U}_B| + \frac{1}{2} |\mathcal{U}_B \times \mathcal{U}_B|$

A cooks recipe – interpretations of *9*

Step 1 Add *N* atoms in state $|\mathcal{U}_{A}\rangle$ to bucket A Add *N* atoms in state $|\mathcal{U}_{B}\rangle$ to bucket B

We now have two ensembles, each of which consist of **N** atoms in a known pure state

Step 2 Add buckets A and B to bucket C and mix (Mixing does not affect the state of a given atom)



Step 3 Pick an atom at random from bucket C

Which is Correct?

The atom is in a pure state but we don't know if it is in $|\mathcal{U}_A\rangle$ or $|\mathcal{V}_B\rangle$ The atom is in a mixed state $\mathcal{G} = \frac{1}{2} [\mathcal{U}_A \times \mathcal{V}_A] + \frac{1}{2} [\mathcal{U}_B \times \mathcal{U}_B]$ There is no difference!

The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:

If two descriptions lead to identical predictions for observable outcomes then they are <u>identical</u>

Loosely, (i) is a *frequentist view* (ii) is a *Bayesian view*

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

Begin 02-15-2023

There is no difference!

The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:

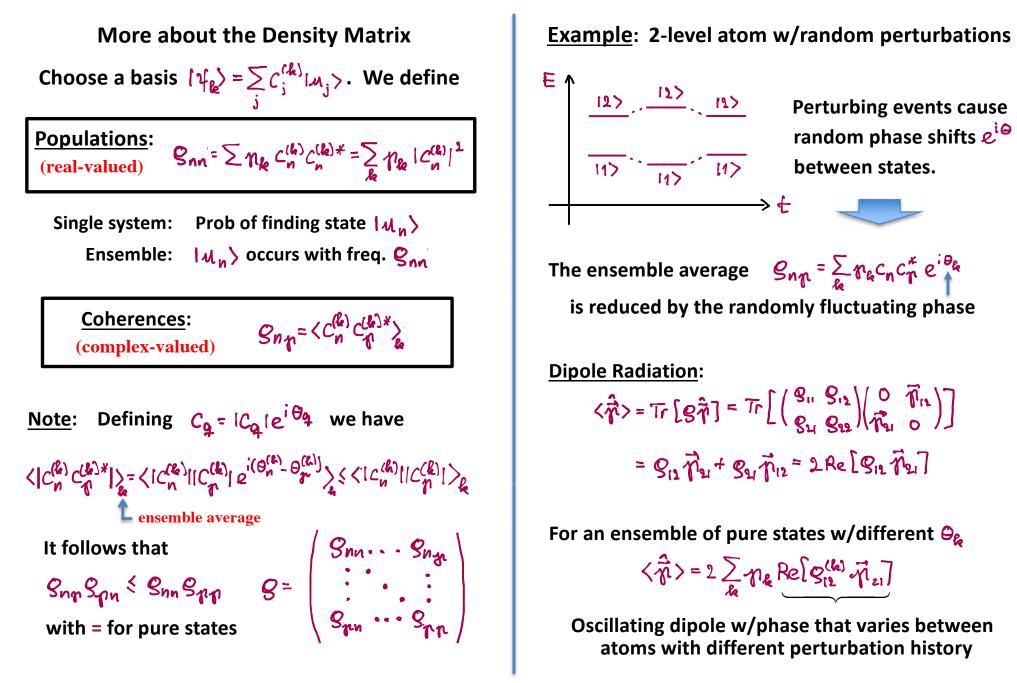
If two descriptions lead to identical predictions for observable outcomes then they are <u>identical</u>

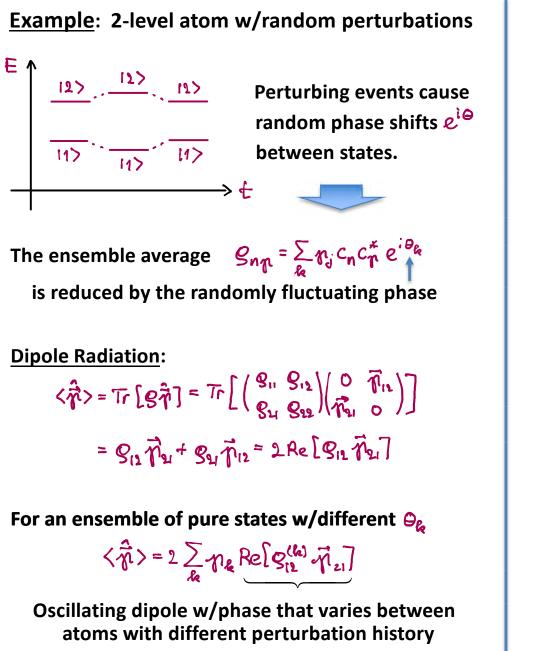
Loosely, (i) is a frequentist view (ii) is a Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

More about the Density Matrix Choose a basis $\{\gamma_{k}\} = \sum_{j} C_{j}^{(k)} \mu_{j} > .$ We define
$\frac{\text{Populations:}}{\text{(real-valued)}} \mathfrak{S}_{nn} = \sum \eta_{k} \mathcal{C}_{n}^{(k)} \mathcal{C}_{n}^{(k) \neq} = \sum_{k} \eta_{k} \mathcal{C}_{n}^{(k)} ^{2}$
Single system: Prob of finding state $ u_n\rangle$ Ensemble: $ u_n\rangle$ occurs with freq. Q_{nn}
$\frac{\text{Coherences:}}{(\text{complex-valued})} \qquad $
<u>Note</u> : Defining C _g = IC _g (e ^{i θ} 4 we have
$\langle C_n^{(k)} C_1^{(k)} \rangle = \langle C_n^{(k)} C_p^{(k)} e^{i(\Theta_n^{(k)} - \Theta_n^{(k)})} \rangle_k \langle \langle C_n^{(k)} C_p^{(k)} \rangle_k$ ensemble average
It follows that $S_{nn}S_{nn} \leq S_{nn}S_{nn} \qquad S = \begin{pmatrix} S_{nn} \cdots S_{nn} \\ \vdots \\ S_{nn} & S_{nn} \end{pmatrix}$ with = for pure states





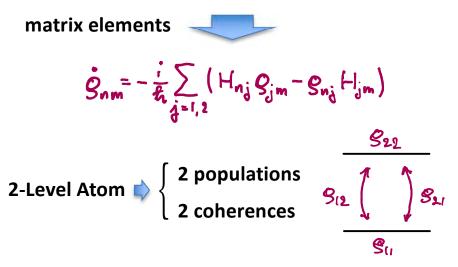
Time Evolution of the Density Matrix

<u>Challenge</u>: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change $\exists c \ g^2$ (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

 $\dot{g} = -\frac{i}{k} [H,g] = -\frac{i}{k} (Hg-gH)$

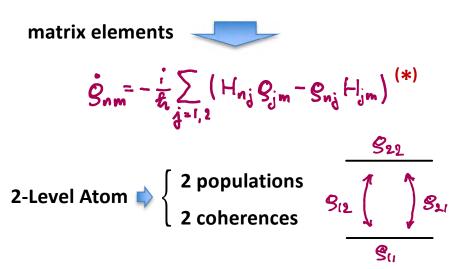


Time Evolution of the Density Matrix

- Challenge:We need "equations of motion" that
combine the Schrödinger Equation
with the effect of processes that can
change Tr g² (measure of purity)
- <u>Approach</u>: We do not have time for a rigorous derivation, so will rely on plausible

Schrödinger Evolution: In general, we have

 $\dot{g} = -\frac{i}{k} [H,g] = -\frac{i}{k} (Hg-gH)$



Consider the 2-Level Rabi problem with

$$H = H_{0} + V & V_{12} = \frac{1}{2} h X_{12} e^{-i\omega t} + c.c.$$

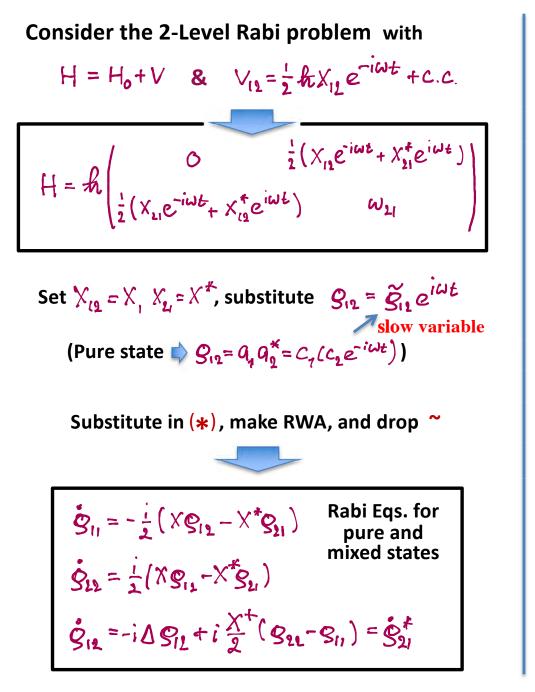
$$H = h \begin{pmatrix} 0 & \frac{1}{2} (X_{12} e^{-i\omega t} + X_{21}^{*} e^{-i\omega t}) \\ \frac{1}{2} (X_{21} e^{-i\omega t} + X_{12}^{*} e^{-i\omega t}) & \omega_{21} \end{pmatrix}$$

Set $\chi_{12} = \chi_1 \chi_2 = \chi^*$, substitute $\mathcal{G}_{12} = \widetilde{\mathcal{G}}_{12} e^{i\omega t}$ slow variable (Pure state $\Rightarrow \mathcal{G}_{12} = \mathcal{G}_1 \mathcal{G}_2^* = \mathcal{C}_1 (\mathcal{C}_2 e^{-i\omega t})$)

Substitute in (*), make RWA, and drop ~

$$\dot{g}_{11} = -\frac{i}{2} \left(\chi g_{12} - \chi^* g_{21} \right)$$
Rabi Eqs. for
pure and
mixed states
$$\dot{g}_{12} = -\frac{i}{2} \left(\chi g_{12} - \chi^* g_{21} \right)$$

$$\dot{g}_{12} = -i \Delta g_{12} + i \frac{\chi^*}{2} \left(g_{22} - g_{11} \right) = \dot{g}_{21}^*$$



 Next: Non-Hamiltonian evolution

 Types of events

 (i)
 Elastic collisions:

 No change in energy

 (ii)
 Inelastic collisions:

 Atom loss

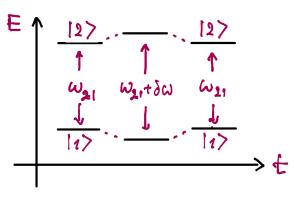
 (iii)
 Spontaneous decay:

 Transition
 12>→11>

Simple Model of Elastic Collisions

Two atoms near each other

energy levels shift, free evol. of ۲٫۰ changed



Paradigm for perturbations that do not lead to net change in energy

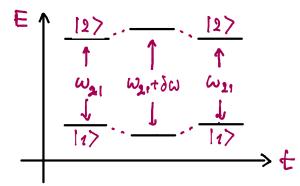
Next: Non-Hamiltonian evolution

Types of events

- (i) Elastic collisions: No change in energy
- (ii) Inelastic collisions: Atom loss
- (iii) Spontaneous decay: Transition $|2\rangle \Rightarrow |_{1}\rangle$

Simple Model of Elastic Collisions

Two atoms near each other energy levels shift, free evol. of **g**n changed



Paradigm for perturbations that do not lead to net change in energy

Evolution of coherence (fast variables)

$$\hat{g}_{12} = -i \left[\omega_{12} + \delta \omega(t) \right] g_{12}$$

$$\Rightarrow g_{12}(t) = g_{12}(0) e^{i\omega_{12}t} e^{-i \int_{0}^{t} dt' \delta \omega(t')}$$

$$collisional history$$

We need the ensemble average of $\mathcal{G}_{12}(\mathcal{L})$

<u>Assumptions</u>: (& : ensemble average)

- From atom to atom δω(t) is a
 Gaussian Random Variable
- Averaged over the ensemble $\langle \delta \omega \langle t \rangle \rangle_{a} = 0$
- Collisions have no memory over time,

 $\langle \partial \omega(t) \delta \omega(t) \rangle_{2} = \frac{1}{2} \delta(t-t')$

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\delta\omega(t')}\right\rangle_{R} = e^{-t/T}$$

Evolution of coherence (fast variables)

 $\dot{g}_{12} = -i \left[\omega_{11} + \delta \omega(t) \right] g_{12}$ $\Rightarrow g_{12}(t) = g_{12}(0) e^{i\omega_{12}t} e^{-i \int_{0}^{t} dt' \, \partial \omega(t')}$ collisional history

We need the ensemble average of $\mathcal{G}_{12}(\mathcal{L})$

Assumptions: (&: ensemble average)

- From atom to atom δω(t) is a Gaussian Random Variable
- Averaged over the ensemble $\langle \delta \omega(t) \rangle = 0$
- Collisions have no memory over time,

 $\langle \partial \omega(t) \delta \omega(t') \rangle = \frac{2}{T} \delta(t-t')$

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\,\delta\omega(t')}\right\rangle_{R} = e^{-t/2}$$

It follows that: $g_{12}(t) = g_{12}(0) e^{-i\omega_{21}t} e^{-t/\tau}$

Add this decay to the equation of motion to get

$$\dot{g}_{12} = (\dot{g}_{12})_{S.E.} + (\dot{g}_{12})_{E.C.} = -(i\omega_{21} - i/\tau)g_{12}$$

Simple Model of Inelastic Collisions

As modeled by, e.g., Milloni & Eberly, this is a steady loss of atoms

This is strange because Trg(t) is not preserved Convenient when working with quantities

$$N < \hat{\eta} > \propto N (\hat{\eta}_{12} \mathcal{G}_{11} + \hat{\eta}_{21} \mathcal{G}_{12})$$

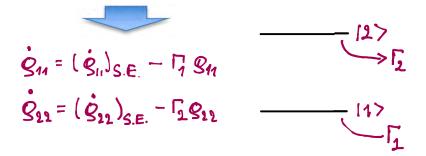
It follows that: $g_{12}(4) = g_{12}(0)e^{-i\omega_{21}t}e^{-t/\tau}$

Add this decay to the equation of motion to get

 $\dot{g}_{12} = (\dot{g}_{12})_{S,E_1} + (\dot{g}_{12})_{E,C_2} = -(i\omega_{21} - i/\tau)g_{12}$

Simple Model of Inelastic Collisions

As modeled by, e.g., Milloni & Eberly, this is a steady loss of atoms



This is strange because Trg(t) is not preserved Convenient when working with quantities

 $N\langle \vec{\eta} \rangle \propto N(\vec{\eta}_{12}g_{11} + \vec{\eta}_{21}g_{12})$

Effect on probability amplitudes

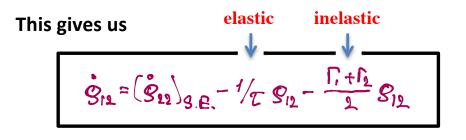
Populations are ensemble averages of the type

 $g_{11}(t) = \langle [a_1(t)]^2 \rangle = \langle [a_1(0)]^2 \rangle e^{-\Gamma_1 t}$ $g_{12}(t) = \langle [a_2(t)]^2 \rangle = \langle [a_2(0)]^2 \rangle e^{-\Gamma_2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

 $\langle |a_1(t)| \rangle = \langle |a_1(0)| \rangle e^{-\frac{1}{2}t}$ $\langle |a_2(t)| \rangle = \langle |a_2(t)| \rangle e^{-\frac{1}{2}t}$

Thus, for the coherences $S_{12}(f) = \langle a_1(f)a_2(f)^* \rangle = \langle a_1(0)a_2(0)^* \rangle e^{-\frac{1}{2}f} e^{-\frac{1}{2}f} e^{-\frac{1}{2}f}$



Effect on probability amplitudes

Populations are ensemble averages of the type

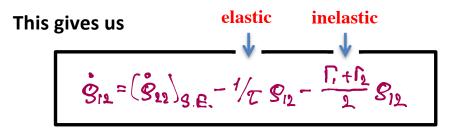
 $g_{11}(t) = \langle [a_1(t)]^2 \rangle = \langle [a_1(0)]^2 \rangle e^{-\Gamma_1 t}$ $g_{12}(t) = \langle [a_2(t)]^2 \rangle = \langle [a_2(0)]^2 \rangle e^{-\Gamma_2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

 $\langle |a_1(t)| \rangle = \langle |a_1(0)| \rangle e^{-f_1/2t}$ $\langle |a_2(t)| \rangle = \langle |a_2(t)| \rangle e^{-f_2/2t}$

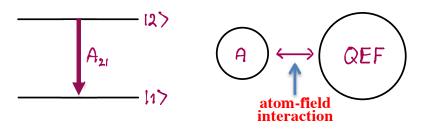
Thus, for the coherences

 $S_{12}(t) = \langle a_1(t)a_2(t)^* \rangle = \langle a_1(0)a_2(0)^* \rangle e^{-\frac{1}{2}t} e^{-\frac{1}{2}t}$



Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field



Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives the evolution

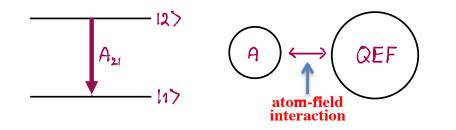
 $|1\rangle_{A}|1\rangle_{B} \rightarrow \alpha_{1}|1\rangle_{A}|1\rangle_{B} + \alpha_{1}|2\rangle_{A}|2\rangle_{B}$

- <u>Step (2)</u> She gives atom B to Bob and asks him to measure if it is in $[1\rangle_{g}$ or $[2\rangle_{g}$ and keep the result secret forever.
- **<u>Result</u>**: Alice now has a 2-level atom in the state

 $g = [a_1(2|1)_{AA}(1) + [a_2(2)_{AA}(2)]$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field



Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

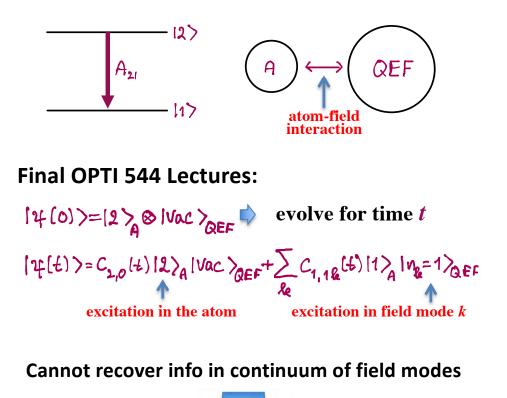
<u>Step (1)</u> She applies a Hamiltonian that drives the evolution

 $|1\rangle_{A}|1\rangle_{B} \rightarrow \alpha_{1}|1\rangle_{A}|1\rangle_{B} + \alpha_{1}|2\rangle_{A}|2\rangle_{B}$

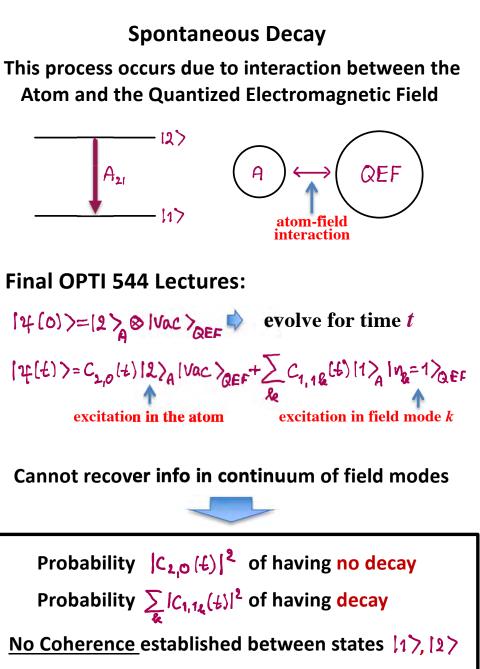
Step (2) She gives atom B to Bob and asks him to measure if it is in $[1\rangle_{B}$ or $|2\rangle_{B}$ and keep the result secret forever.

<u>Result</u>: Alice now has a 2-level atom in the state $g = [a_{1}[^{2}|1\rangle_{AA} \langle 1] + [a_{2}]^{2}|2\rangle_{AA} \langle 2]$ **Spontaneous Decay**

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field



Probability $|C_{2,0}(\xi)|^2$ of having no decay Probability $\sum_{k} |C_{1,1k}(\xi)|^2$ of having decay <u>No Coherence</u> established between states $|1\rangle$, $|2\rangle$



Conclusion: Decay moves population $|2\rangle \Rightarrow |_{1}\rangle$ at rate A_{21} , damps coherence at rate $A_{21}/2$

$$\dot{\mathcal{G}}_{14} = A_{21} \, \mathcal{G}_{22} \, , \quad \dot{\mathcal{G}}_{21} = -A_{21} \, \mathcal{G}_{21}$$
$$\dot{\mathcal{G}}_{12} = -\frac{A_{21}}{2} \, \mathcal{G}_{12} = \dot{\mathcal{G}}_{21}^{*}$$

Putting it all together:

$$\dot{g}_{11} = -\Gamma_{1} \ g_{11} + A_{21} g_{22} - \frac{1}{2} (X g_{12} - X^{*} g_{21})$$

$$\dot{g}_{22} = -\Gamma_{2} g_{22} - A_{21} g_{22} + \frac{1}{2} (X g_{12} - X^{*} g_{21})$$

$$\dot{g}_{12} = (i\Delta - \beta) \ g_{12} + \frac{iX^{*}}{2} (g_{22} - g_{11}) = g_{21}^{*}$$
where $\beta = \frac{1}{\tau} + \frac{A_{21}}{2} + \frac{\Gamma_{1} + \Gamma_{2}}{2}$

These are our desired

Density Matrix Equations of Motion