So far we have derived a set of Eqs. of Motion for the elements of the Density Matrix:

$$\dot{S}_{11} = -\Gamma_{1} S_{11} + A_{21} S_{22} - \frac{1}{2} (X S_{12} - X^{*} S_{21})$$

$$\dot{S}_{22} = -\Gamma_{2} S_{22} - A_{21} S_{22} + \frac{1}{2} (X S_{12} - X^{*} S_{21})$$

$$\dot{S}_{12} = (i\Delta - \beta) S_{12} + \frac{iX^{*}}{2} (S_{22} - S_{11}) = \dot{S}_{21}^{*}$$
where
$$\beta = \frac{1}{L} + \frac{A_{21}}{2} + \frac{\Gamma_{1} + \Gamma_{2}}{2}$$

- (*) These eqs. are difficult to solve in the general case. See, e. g., Allen & Eberly for discussion of some special cases and a reference to original work by Torrey et al.
- (*) For ≥ 3 levels the Density Matrix Equations get very cumbersome and it is desirable to simplify the description when possible.
- (*) One such simplification takes the form of Rate Equations for the populations only.

Steady State Solutions: (requires $\Gamma_4 = \Gamma_2 = 0$)

Let
$$g_{12} = 0$$
 \Rightarrow
$$\begin{cases} g_{12} = \frac{i \chi^{*}/2}{\beta - i \Delta} (g_{22} - g_{11}) \\ g_{21} = \frac{-i \chi/2}{\beta + i \Delta} (g_{22} - g_{11}) \end{cases}$$

$$\chi g_{12} - \chi^{*} g_{21} = \frac{i [\chi]^{2}}{\Delta^{2} + \beta^{2}} (g_{22} - g_{11})$$

Plug into eqs for populations to get

$$\dot{g}_{11} = A_{21}g_{22} + \frac{1 \times 1^{2} / 3 / 2}{\Delta^{2} + \beta^{2}} (g_{12} - g_{11}) = 0$$

$$\dot{g}_{22} = -A_{21}g_{22} - \frac{1 \times 1^{2} / 3 / 2}{\Delta^{2} + \beta^{2}} (g_{22} - g_{11}) = 0$$

From these eqs. we can find steady state values for the populations and coherences in terms of $\chi_{,\Delta}A_{2},\beta$ when (and only when) $g_{1}=g_{2}=0$

Steady State Solutions: (requires $\lceil \frac{1}{4} = \lceil \frac{1}{2} = 0 \rceil$)

Let
$$\dot{g}_{12} = 0$$
 \Rightarrow
$$\begin{cases} g_{12} = \frac{i \times^{*}/2}{\beta - i \Delta} (g_{22} - g_{11}) \\ g_{21} = \frac{-i \times/2}{\beta + i \Delta} (g_{22} - g_{11}) \end{cases}$$

$$\chi_{g_{12}} - \chi_{g_{21}} = \frac{i[\chi_{1}]^{2}}{\Delta_{1} + \beta_{2}} (g_{99} - g_{11})$$

Plug into eqs for populations to get

$$\dot{g}_{11} = A_{21}g_{22} + \frac{1 \times 1^{2} / 3 / 2}{\Delta^{2} + \beta^{2}} (g_{12} - g_{11}) = 0$$

$$\dot{g}_{22} = -A_{21}g_{22} - \frac{1 \times 1^{2} / 3 / 2}{\Delta^{2} + \beta^{2}} (g_{22} - g_{11}) = 0$$

From these eqs. we can find <u>steady state values</u> for the populations and coherences in terms of $\chi_{1}\Delta_{1}A_{1}$, β when (and only when) $g_{11}=g_{11}=0$

Note: The terms remaining after elimination of \mathcal{G}_{12} , \mathcal{G}_{21} are commonly identified with <u>induced</u> or <u>stimulated</u> processes. They are proportional to $[X]^2$, $[E_o]^2$ and thus the <u>intensity</u> of the light field.

Def: Absorption Rate = Stimulated Emission Rate

$$R_{12} = \frac{1 \times 1^{2} / 3 / 2}{\Delta^{2} + \beta^{2}} = \frac{1 / \sqrt{12} \cdot \vec{\xi} \cdot \vec{\xi} \cdot \sqrt{12} \cdot \vec{\xi} \cdot \vec{\xi} \cdot \sqrt{12} \cdot \vec{\xi} \cdot$$

Schematic:

Note: The terms remaining after elimination of \mathcal{G}_{12} , \mathcal{G}_{21} are commonly identified with <u>induced</u> or <u>stimulated</u> processes. They are proportional to $[X]^2$, $[E_o]^2$ and thus the <u>intensity</u> of the light field.

<u>Def</u>: Absorption Rate = Stimulated Emission Rate

$$R_{12} = \frac{[X]^{2} \beta/2}{\Delta^{2} + \beta^{2}} = \frac{[\vec{R}_{12} \cdot \vec{E} E_{o}/k]^{2} \beta/2}{(\omega_{21} - \omega)^{2} + \beta^{2}}$$

Schematic:

Elastic Collision Broadening

In hot and dense gases the dominant source of relaxation is often elastic collisions between atoms

Let
$$\beta \gg \Gamma_1$$
, Γ_2 , A_{21} \Rightarrow C_{12} reaches steady state much faster than C_{11} , C_{22}

We can solve the eq. for \mathcal{S}_{12} assuming it is in steady state for given values of \mathcal{S}_{12} , \mathcal{S}_{22}

This yields Rate Equations for the populations only, valid in the <u>collision broadened</u> regime

$$\dot{g}_{11} = -\Gamma_{1}g_{11} + A_{11}g_{12} + R_{12}(g_{22} - g_{11}) \neq 0$$

$$\dot{g}_{22} = -\Gamma_{2}g_{22} - A_{21}g_{22} - R_{12}(g_{22} - g_{11}) \neq 0$$

- (*) This is another example of <u>adiabatic elimination</u> of a fast variable (the coherence), leaving us with simpler equations for the slower variables.
- (*) From these we can find the <u>transient</u> behavior of the coherences S_{11} , S_{22}

Elastic Collision Broadening

In hot and dense gases the dominant source of relaxation is often elastic collisions between atoms

Let $\beta \gg \Gamma_1, \Gamma_2, A_{21} \Rightarrow G_{12}$ reaches steady state much faster than G_{11}, G_{22}

We can solve the eq. for \mathcal{S}_{12} assuming it is in steady state for given values of \mathcal{S}_{12}

This yields Rate Equations for the populations only, valid in the <u>collision broadened</u> regime

$$\hat{S}_{11} = -\Gamma_{1} S_{11} + A_{11} S_{12} + R_{12} (S_{22} - S_{11}) \neq 0$$

$$\hat{S}_{22} = -\Gamma_{2} S_{22} - A_{21} S_{22} - R_{12} (S_{22} - S_{11}) \neq 0$$

- (*) This is another example of <u>adiabatic elimination</u> of a fast variable (the coherence), leaving us with simpler equations for the slower variables.
- (*) From these we can find the <u>transient</u> behavior of the coherences S_{11} , S_{22}

Note: When collisions are very frequent the dipole ⟨♠⟩ is oriented at random relative to the driving field. In that case

$$R_{12} = \frac{\langle |\vec{\eta}_{12} \cdot \vec{\epsilon} E_o/h|^2 \rangle_{\text{angles}} \beta/2}{\Delta^2 + \beta^2} = \frac{1}{3} \frac{|\chi|^2 \beta/2}{\Delta^2 + \beta^2}$$

Photon Flux and Cross Section

Let
$$R_{12} = \sigma(\Delta) \phi$$
 where $\frac{1}{2} c \varepsilon_0 |E_0|^2$ "photon flux" intensity

This allows us to recast the Rate Eqs

$$\dot{Q}_{11} = -\Gamma_{1}Q_{11} + A_{21}Q_{22} + \sigma(\Delta)\phi(Q_{22} - Q_{11})$$

$$\dot{Q}_{22} = -\Gamma_{2}Q_{22} - A_{21}Q_{22} - \sigma(\Delta)\phi(Q_{22} - Q_{11})$$

Note: When collisions are very frequent the dipole ⟨♠⟩ is oriented at random relative to the driving field. In that case

$$R_{12} = \frac{\langle |\vec{\eta}_{12} \cdot \vec{\xi} E_o / \hbar |^2 \rangle_{\text{angles}} / \frac{3/2}{2}}{\Delta^2 + \beta^2} = \frac{1}{3} \frac{|\chi|^2 \beta / 2}{\Delta^2 + \beta^2}$$

Photon Flux and Cross Section

Let
$$R_{12} = \sigma(\Delta) \Phi$$
 where $\frac{1}{2} c \varepsilon_0 |E_0|^2$ "photon flux" intensity

This allows us to recast the Rate Eqs

$$\dot{Q}_{11} = -\Gamma_{1}Q_{11} + A_{21}Q_{22} + \sigma(\Delta)\phi(Q_{22} - Q_{11})$$

$$\dot{Q}_{22} = -\Gamma_{2}Q_{22} - A_{21}Q_{22} - \sigma(\Delta)\phi(Q_{22} - Q_{11})$$

We see that per atom, per unit time

of absorption events =
$$\sigma(\Delta) \Phi \mathcal{G}_{ll}$$

of stim. emission events = $\sigma(\Delta) \Phi \mathcal{G}_{22}$

Note: Given N atoms, the total # of events are Ng_{11} , Ng_{12} . This is useful when we care about the total power in the light field, e. g., in the context of laser theory

Solution of the Rate Equations

Let
$$\Gamma_1 = \Gamma_2 = 0$$
 and plug in $\mathcal{G}_{11} = 1 - \mathcal{G}_{22}$

$$\dot{g}_{22} = -A_{21}g_{22} - \sigma(\Delta)\phi (2g_{22} - 1)$$

$$= -(A_{21} + 2\sigma(\Delta)\phi)g_{22} + \sigma(\Delta)\phi$$

This solution is a damped approach to Steady State!

We see that per atom, per unit time

of absorption events =
$$\sigma(\Delta) \Phi g_{ij}$$

of stim. emission events = $\sigma(\Delta) \Phi g_{22}$

Note: Given N atoms, the total # of events are Ng_{11} , Ng_{12} . This is useful when we care about the total power in the light field, e. g., in the context of laser theory

Solution of the Rate Equations

Let
$$\Gamma_1 = \Gamma_2 = 0$$
 and plug in $\mathcal{G}_{11} = 1 - \mathcal{G}_{22}$

$$\dot{g}_{12} = -A_{21}g_{22} - \sigma(\Delta)\phi (2g_{22} - 1)$$

$$= -(A_{21} + 2\sigma(\Delta)\phi)g_{22} + \sigma(\Delta)\phi$$

The solution is a damped approach to Steady State!

$$S_{22}(t) = \left[S_{22}(0) - S_{22}(\infty)\right] e^{-\delta t} + S_{22}(\infty)$$
where
$$\delta = (A_{21} + 2\sigma(\Delta)\phi), \quad S_{22}(\infty) = \frac{\sigma(\Delta)\phi}{A_{21} + 2\sigma(\Delta)\phi}$$

- (*) This <u>transient</u> behavior is valid in the collision broadened regime.
- (*) Without collisions the transient regime Is one of damped Rabi oscillations.
- (*) The steady state value $Q_{33}(\triangle)$ is good regardless

$$S_{22}(t) = \left[S_{22}(0) - S_{22}(\infty)\right] e^{-\delta t} + S_{22}(\infty)$$
where
$$\delta = (A_{21} + 2\sigma(\Delta)\phi), \quad S_{22}(\infty) = \frac{\sigma(\Delta)\phi}{A_{21} + 2\sigma(\Delta)\phi}$$

- (*) This <u>transient</u> behavior is valid in the collision broadened regime.
- (*) Without collisions the transient regime Is one of damped Rabi oscillations.
- (*) The steady state value $g_{y_2}(x)$ is good regardless

Numerical simulation of Density Matrix Eqs (Optical Bloch Picture).

Figure from Milloni & Eberly

Figure 6.6 Numerical solutions of the v, w equations (6.5.21) for a range of collisional damping rates. Note scale changes.

$$g_{21}(t) = [g_{22}(0) - g_{21}(\infty)]e^{-\delta t} + g_{22}(\infty)$$

where

$$\mathcal{E} = (A_{21} + 2\sigma(\Delta)\phi)$$
, $\mathcal{E}_{22}(\infty) = \frac{\sigma(\Delta)\phi}{A_{21} + 2\sigma(\Delta)\phi}$

- (*) This <u>transient</u> behavior is valid in the collision broadened regime.
- (*) Without collisions the transient regime Is one of damped Rabi oscillations.
- (*) The steady state value $g_{y_2}(x)$ is good regardless

Limiting cases:

$$\nabla(\Delta) \phi = \delta \qquad \Rightarrow \qquad g_{22}(\infty) = 0$$

$$\nabla(\Delta) \phi \ll A_{21} \qquad \Rightarrow \qquad g_{22}(\infty) = \frac{\nabla(\Delta) \phi}{A_{21}}$$

$$\nabla(\Delta) \phi \gg A_{21} \qquad \Rightarrow \qquad g_{22}(\infty) = \frac{1}{2} \iff \text{Saturation!}$$

Rewrite
$$\mathcal{Q}_{22}(\infty)$$
 using $\mathcal{R}_{12} = \sigma(\Delta) \phi = \frac{1 \times 1^2 / 3 / 2}{\Delta^2 + \beta^2}$

Plot $\mathcal{Q}_{22}(\varnothing)$ vs \triangle :

HWHM line width:

Limiting cases:

$$\nabla(\Delta) \phi = \delta \qquad \Rightarrow \qquad g_{22}(\infty) = 0$$

$$\nabla(\Delta) \phi \ll A_{21} \qquad \Rightarrow \qquad g_{22}(\infty) = \frac{\nabla(\Delta) \phi}{A_{21}}$$

$$\nabla(\Delta) \phi \gg A_{21} \qquad \Rightarrow \qquad g_{22}(\infty) = \frac{1}{2} \iff \text{Saturation!}$$

Rewrite
$$\mathcal{Q}_{22}(\infty)$$
 using $\mathcal{R}_{12} = \sigma(\Delta) \phi = \frac{|\chi|^2 \beta/2}{\Delta^2 + \beta^2}$

Plot $\mathcal{G}_{22}(\infty)$ vs Δ :

HWHM line width:

Power Broadening: Rewrite

$$\Delta_{1/2} = \beta \sqrt{1 + \phi / \phi_{SAT}} = \beta \sqrt{1 + I / I_{SAT}}$$
where
$$\phi_{SAT} = \frac{A_{21}}{2000}, \quad I_{SAT} = \frac{A_{21}}{2000}$$

$$\beta : \text{natural linewidth}$$

Power Broadening in molecular beam spectroscopy:

Keep $\underline{\mathsf{T}} \ll \underline{\mathsf{T}}_{\mathsf{SeT}}$ for best spectroscopic resolution

Power Broadening: Rewrite

$$\Delta_{I/2} = \beta \sqrt{1 + \phi / \phi_{SAT}} = \beta \sqrt{1 + T / T_{SAT}}$$
where
$$\phi_{SAT} = \frac{A_{2I}}{20(0)}, \quad T_{SAT} = \frac{A_{CA}}{20(0)}$$

$$\beta : \text{natural linewidth}$$

Power Broadening in molecular beam spectroscopy:

Keep $T \ll T_{SeT}$ for best spectroscopic resolution End 02-20-2023

More about the Photon Scattering Cross Section **By Definition**

$$R_{12} = \frac{|X|^2 \beta / 1}{\Delta^2 + \beta^2} = \sigma(\Delta) \phi = \sigma(\Delta) \frac{1/2 c \epsilon_0 |E_0|^2}{\hbar \omega}$$

where $|X|^2 = |\vec{R}_{12} \cdot \vec{E} E_0 / R|^2 = 4 \frac{|\vec{R}_{12}|^2 |E_0|^2}{2^2}$

and

This gives us

$$\sigma(\Delta) = \beta \frac{\omega n_{12}^2}{\hbar c \varepsilon_0 \beta} \frac{\beta^2}{\Delta^2 + \beta^2} \equiv \sigma(0) \frac{\beta^2}{\Delta^2 + \beta^2}$$

Let $\beta = A_{21}/2$, $\Gamma_1 = \Gamma_2 = 0$ (collision free)

$$\sigma(0) = f \frac{2\omega p_{12}^2}{4\pi c \epsilon_0 A_{21}} = f \frac{4\pi}{4\epsilon_0 \lambda} \frac{p_{21}^2}{A_{21}} *$$

The connection between A_{21} and A_{11}^{2} is intuitive, derived rigorously during the QED part of OPTI 544

More about the Photon Scattering Cross Section By Definition

$$R_{12} = \frac{|X|^2 \beta / 1}{\Delta^2 + \beta^2} = \sigma(\Delta) \phi = \sigma(\Delta) \frac{1/2 c \epsilon_0 |E_0|^2}{\hbar \omega}$$

where
$$|X|^2 = |\vec{\eta}_{12} \cdot \vec{\epsilon} E_0 / k |^2 = 4 \frac{|\vec{\eta}_{12}|^2 |E_0|^2}{k^2}$$

and

This gives us

$$\sigma(\Delta) = \beta \frac{\omega \, p_{12}^2}{4 c \varepsilon_0 \beta} \frac{\beta^2}{\Delta^2 + \beta^2} \equiv \sigma(0) \frac{\beta^2}{\Delta^2 + \beta^2}$$

Let
$$\beta = A_{21}/2$$
, $\Gamma_1 = \Gamma_2 = 0$ (collision free)

The connection between A_{21} and A_{11}^{2} is intuitive, derived rigorously during the QED part of OPTI 544

Here we simply note the result :
$$A_{11} = \frac{\eta_{12}^2 \omega^3}{3\pi \epsilon_0 \pi c^3}$$

Substituting in * we get

$$\mathcal{O}(0) = \begin{cases} \frac{2\omega}{4c\epsilon_0} & \frac{3\pi\epsilon_0 + c^3}{\omega^3} = \frac{3\lambda^2}{2\pi} \\ \frac{3\lambda^2}{2\pi} \geqslant \mathcal{O}(0) \geqslant \frac{\lambda^2}{2\pi} \end{cases}$$
Collision free, polarized light

Collision broadened or un-polarized light

 Remarkably simple result – easy to remember

Why?

Here we simply : note the result

$$A_{11} = \frac{n_{12}^2 \omega^3}{3\pi \epsilon_0 kc^3}$$

Substituting in **★** we get

Remarkably simple result – easy to remember

Why?

Rate Eq. Model of Absorption

Remember our Physical Picture of absorption/stim. emission

The loss over distance d^2 is $d\phi = \sigma(\Delta)\phi N(g_{ij} - g_{ij})d^2$

If $\phi \ll \phi_{SA+}$ then $Q_{11} = 1$ and $Q_{22} = 0$ and we get

$$d\phi = -N\sigma(\Delta)\phi d2 \Rightarrow \frac{d}{d2}\phi = -N\sigma(\Delta)\phi = -\alpha\phi$$

Absorption:

Typical
$$\lambda = 500 \, \text{hm}$$
, $\Delta = N \times 10^{-9} \, \text{cm}^2 \frac{\beta^2}{\Delta^2 + \beta^2}$

Solid: N~ lo²¹/cm³ ⇒ totally opaque @ resonance

Gas: N~10⁸/cm⁸ ⇒ transparent @ resonance

Rate Eq. Model of Absorption

Remember our Physical Picture of absorption/stim. emission

The loss over distance $d \ge is d = \sigma(\Delta) \phi N(g_{22} - g_{\mu}) d \ge i$

If $\phi \ll \phi_{SAL}$ then $Q_{11} = 1$ and $Q_{22} = 0$ and we get

$$d\phi = -N\sigma(\Delta)\phi dz \Rightarrow \frac{d}{dz}\phi = -N\sigma(\Delta)\phi = -\alpha\phi$$

Absorption:

$$\phi(z) = e^{-\alpha(z-z_0)} \phi(z_0)$$

$$T(z) = e^{-\alpha(z-z_0)} T(z_0)$$

Solid: N~ lo²¹/cm² ⇒ totally opaque @ resonance

Gas: $N \sim 10^8 / \text{cm}^3$ | transparent @ resonance

Note: This is a low saturation result!

If
$$\phi \gg \phi_{\text{sat}}$$
 then $g_{22}(\infty) = 1/2 \Rightarrow d\phi = N \frac{A_{21}}{2} d\xi$

At very high flux the loss is relatively insignificant

$$\phi(2),\phi(2_0) \gg \frac{NA_{21}}{2}(2-2_0)$$

- This is referred to as <u>bleaching</u> or <u>hole burning</u>

Blackbody Radiation

This is a standard problem in Optical Physics, which we review only briefly in OPTI 544. See almost any textbook for details, including Milloni & Eberly.

Step (1): We define a Lineshape Function:

$$\sigma(\Delta) = \frac{f r_{12}^2 \omega_{2i}}{2 \varepsilon_0 f c} \frac{\partial v_{2i} / \pi}{(v_{2i} - v)^2 + \partial v_{2i}^2}, \partial v_{2i} = \beta / 2\pi$$

- S(v) is sharply peaked compared to the energy density g(v) of Blackbody Radiation.
 - \Rightarrow we can approximate $S(v) = \delta(v_{21} v)$

Step (2): Sub in the expression for transition rates and integrate over all frequencies

$$R_{12} = \int_{0}^{\infty} \sigma(v) \phi(v) dv = \frac{2 \eta_{21}^{1} \omega_{21}}{2 \varepsilon_{0} k} \int_{0}^{\infty} S(v) \frac{g(v)}{k v} dv$$

$$R_{12} = \frac{2 \eta_{21}^{1} \omega_{21}}{2 \varepsilon_{0} k^{1}} g(v_{21}) = B g(v_{21})$$
Einstein B coefficient

Step (3): 2-level atom in thermal equilibrium with Blackbody Radiation field

$$\frac{g_{22}}{g_{11}} = e^{-kV_{21}/k_{g}T}$$

$$\left(A_{21} + R_{21}\right)g_{22} = R_{12}g_{11}$$
(Detailed Balance)
$$g(V_{21}) = \frac{A_{21}/B}{e^{kV_{21}/k_{g}T}-1}$$

Step (4): Use prior result for A_{21} to find A_{21}/B which is independent of γ_{12}

$$g(v) = \frac{8\pi h v^3/c^3}{e h v/k_B T - 1}$$

Energy Density of the Blackbody Radiation field

Step (5): We can extend this to find the

- * Total electromagnetic energy density
- * Total radiated intensity from a black body

Step (3): 2-level atom in thermal equilibrium with Blackbody Radiation field

$$\frac{g_{22}}{g_{11}} = e^{-kv_{21}/k_gT}$$

$$\left(A_{21} + R_{21}\right)g_{22} = R_{12}g_{11}$$
(Detailed Balance)
$$g(v_{21}) = \frac{A_{21}/B}{e^{kv_{21}/k_gT}-1}$$

Step (4): Use prior result for A_{21} to find A_{21}/B , which is independent of γ_{11}

$$S(n) = \frac{8\pi N N^3/C_3}{6 \ln N/8^2 L^{-1}}$$

Energy Density of the Blackbody Radiation field

Step (5): We can extend this to find the

- * Total electromagnetic energy density
- * Total radiated intensity from a black body

Step (6): Relative importance of spontaneous and stimulated emission

We have
$$\frac{A_{21}}{R_{12}} = \frac{A_{21}}{89(v)} = e^{Rv/k_BT} - 1 \gg 1$$

for $T < Several \times 1000 K$

Take the surface of the Sun, T = 5800 K

$$\frac{A_{21}}{R_{12}} \sim 140 @ \lambda_{max} = 500 \text{ nm}$$

End 02-22-2023