OPTI 544: Homework Set #6
Posted March 24, Due April 3.

I

The Lagrangian for a chain of masses m separated by distances @ and connected by
springs with spring constants K can be expressed in terms of the particle positions
and velocities as
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Starting from this Lagrangian derive a wave equation for the displacement field
n(x) in the continuous limit, @ — 0.

II
Show that
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(c)  Finally, write down the Lagrangian, both in terms of the field, and in terms
of the dynamical variables ¢,and ¢g,. Then show that your Lagrange
equation of motion yields the standard 2nd order differential equations
typical of a collection of harmonic oscillators.

Note: Problem I and II(b) are a bit fiddly. If you have trouble getting started or
find yourself stuck before the end, check out my Solution Set on the course website
under the Homework tab.



