OPTI 544 Solution Set 3, Spring 2021

Problem 1
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The equations of motion for the probability amplitudes in the RWA, using the “slow’
variables and setting A=90=0, are

If b,(0)=0 then b,(f)=0 if and only if b,=0 at all times. That requires
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Consistent with the above, we choose b,= L2 by= A1
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Note: If by(f)=0 then b, = by = b,, b, are constant

If the driving field does not lead to a non-zero probability amplitude in the excited state
‘2}, then there can be no induced dipole moment . This is because |1> and |3> of necessity
must be of the same parity to allow for Raman coupling in the first place. That means there
can be no absorption or emission of light, and as a result the wave propagates without loss
of intensity.

Note: The state found in (b) above is referred to as a “dark state”.



Problem 2

(a) Taking the outer product of the state vectors we find
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(b) To check for purity we can compute p? and then check if p2# p or Tr[p2?]<1,either of
which would tell us that the state is mixed. For example, in this case it is straightforward
though somewhat tedious to show that Tr[p2]= (19— 22 )/30=0.539 <1, which tells
us the state is mixed.

There is an easier way if we know the ensemble decomposition, p =X p|w ) (v .
Namely, that p is mixed if one or more of the |t//k> are linearly independent of the other.
In our case we can confirm this by inspection, since |l//1> is confined to the ﬂl>, 2>}
subspace while |y,) has a component along |3).




Problem 3

(a) The Hamiltonian for our 2-level system has the form
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Starting from iap =[H,p] we get ihp,;= Zk(Hikpk/‘_ p,-kaj) , 1, j,ke{l,2}.
Applying this to the elements of the 2-level density matrix, we get
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Now let P = ppne™, p,=pPue™ and substitute in the above equations. This gives us
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We set A=(w,-), Y2=%, X»=X", drop the terms o ¢*>*, and use Pn=—p,

P12 = P . This gives us the desired result
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(b)  The Density Matrix has 2 real-valued populations and 2 complex-valued coherences, which
suggests a total of 6 real-valued variables that must be known in order to specify p.
However, the constraints 0, =1—p;; and pi, = p5; allow us to express 3 of the 6 variables
in terms of the other 3. This leaves us with a total of 3 real-valued variables necessary to
specify an arbitrary Density Matrix, whether it is pure or mixed.

(c) Major approximations implicit in the above result:

(1) The Electric Dipole Approximation (inherent in the form of H)
(i1) The 2-Level Approximation
(iii)  The Rotating Wave Approximation



Problem 4

In steady state the Density Matrix Equations reduce to
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(i) po=—(B=iA)pn+i&(pn=py)=p1=0

We start by solving for the coherences in Equation (iii)
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Substituting in Equation (ii), using P, — P11 =2p»—1, and solving for p,, we get
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Sanity check: pi+ p,=1. With that we have the steady state solutions
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