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Absorption and Dispersion in Gases

Approximations:
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Classical Light-Matter Interaction

Putting it together
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General behavior:
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Putting it together

Classical Light-Matter Interaction
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® We can have loss-less dispersive media

Note: If we introduce the detuning A= [wo-w)
we can rewrite N (w), Ny(W) as
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Superluminal propagation?



Classical Light-Matter Interaction

Free Electrons

(r1 e 1IN 2 Consider the limit L) > @,

[h) —r\® ®» effectively unbound electrons
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This is a reasonable model of plasmas & metals

In this limit we have

C We introduce the . - Net
VeWi<1 for Lyw, » ——=5C Plasma Frequency ° P\ Em




Classical Light-Matter Interaction

Free Electrons

Consider the limit &) > w,

®» effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have
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We introduce the .
Plasma Frequency *
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Let N(cw) purely imaginary
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Quantum Theory of Light-Matter Interaction



Quantum Theory of Light-Matter Interaction

Completed:
— Fully classical description of fields & Atoms

Next Step:

. . - Classical field
— Semiclassical description

Quantum atoms

Self-Consistent Description

Electromagnetic Field — Atom/Molecule/Solid
A ]




Quantum Theory of Light-Matter Interaction

PROBLEMS THAT GET PROBLEMS GET EASER
HARDER WHEN YOU BRING My ol ER

IN QUANTUM MECHANICS

Source: xkcd.com



Quantum Theory of Light-Matter Interaction

Completed:
— Fully classical description of fields & Atoms

Next Step:

. . . Classical field
— Semiclassical description

Quantum atoms

Wave Equation w/classical field & atoms
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Self-Consistent Description

Electromagnetic Field — Atom/Molecule/Solid
A I

Needed: Quantum theory of atomic response

analogous to classical

Note: In QM the dipole is an Observable
Observable = Hermitian operator

Classical Field = C-valued vector

Cannot plug into Wave Eq. for classical field!

How do we solve the mismatch?

Repeated measurements of /'ﬁ[-{,)
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fluctuations
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Note: Given[y(+=0)) and E, the mean (/(lH,))
follows from the Schrodinger Eq.,

) ] ) -
radiates coherently like classical /‘l[-é)

(/’ﬁ(-{,)) is a Real-valued vector (more later)
®» we can plug it into the Wave Eq.
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Quantum Theory of Light-Matter Interaction

Wave Equation w/classical field & atoms
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Wave Eq. w/classical field & quantum atoms
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Note: - The Equations look very similar

- Polarizability, index of refraction, etc
will be very different in some regimes

- Notably, the model is no longer linear

in _ and will lead to phenomena like
saturation and wave mixing

- represents quantum fluctuations
driven by the empty modes of the EM
field, a process also responsible for
spontaneous decay.

Note: Do notidentify (1) and with



Quantum Theory of Light-Matter Interaction

NOtTE. - Ine Ecquations IOOK very similiar

= POIldrizapiity, Inaex ot rerraction, etc

- represents quantum fluctuations
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field, a process also responsible for

Note: Do notidentify {(41) and with
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Atom-field interaction

Hamiltonian:

"’ : time-independent atomic Hamiltonian

: time-dependent driving term,
non necessarily a perturbation

fe sirer e o sreme gy e

Schrodinger Eq.:

Expand in basis of eigenstates of

4> =2 a,8)[Q,>, Hlf,”=E,If,>
n



Quantum Theory of Light-Matter Interaction

Atom-field interaction

Hamiltonian:

time-independent atomic Hamiltonian

: time-dependent driving term,
non necessarily a perturbation

Schrodinger Eq.:

Expand in basis of eigenstates of

4> =2 a,)10,% Hlf,> =E,14,>

PlugintoS.E. ®»

Take scalar product w/ on both sides ®»

On vector-matrix form this can be written

« S.E. in rep.
Still exact!
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Quantum Theory of Light-Matter Interaction

PlugintoS.E. ®»

Take scalar product w/

on both sides ®»

On vector-matrix form this can be written

.

S.E.in _ rep.
Still exact!

Note: If H, and V. are known we can do

- Perturbation Theory
(OK for short times or “weak” driving fields)

- Numerical integration of the S. E.
- Few-level approximations to simplify

and obtain analytical solutions outside
the perturbative regime

General problem:
No analytical solution!
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Atom-Light Interaction: 2-Level Approximation 01-25-2023

General observation:

- Atoms and molecules often behave as if they
have a single, dominant transition frequency

- We expect this when the freq. of the driving
is resonant with one transition
and far off resonance with all others.

Interaction
Y - 1>
State space ’ { 1> ] 2)] £y,
—L— 45
State vector
Schrod. eq.
——x L oWt
Interaction Vi L8 = ’E‘:a 1(%’—:,,@_‘ +C.c.)
Vy, @ = -y 5 (EE,&" %4 )
End

01-23-2023

Parity selection rule

Definition: ¥~ is a reflection through the origin

Atomic Hamiltonian H«& -} » H(#) < H(-¥)
» Eigenstates () = q)(_;‘.ﬂ) = iCPCJ:)

two reflections  “+” = even parity
equals the identity “-” = odd parity

A

The dipole s a vector operator B
transforms like a vector when v — —V

Thus — - — - - and

only when

and | have opposite parity

. . No dipole moment in
Parity rule: energy eigenstate!
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Atom-Light Interaction: 2-Level Approximation

We define

E,~-B
Wy = 2 ¢, E

rs 1
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L Rabi frequency

XLI = %‘“‘ll‘ éEo/&

Switch to rotating frame (slow variables)
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Plug into (S. E.) to get
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Rotating Wave Approximation (RWA)

Very important, equivalent to resonant approximation

*120
Terms «C L2 ‘2t

for variations in

average to zero on time scale

—_-

Lo ( ~ F it
‘Qrwmaz“zhz(@ e AU

i (detuning)

Exactly Solvable !
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Atom-Light Interaction: 2-Level Approximation

Switch to rotating frame (slow variables)

Cole) = GylL),  C ) =0yt¢) ™t

et

Cyte)=- 4 (X, e 4k ) co )

() = (g~ w) G~ (3, + X M)C, )

Rotating Wave Approximation (RWA)

Very important, equivalent to resonant approximation

+120W
Terms<>C2.' t

for variations in

et

average to zero on time scale

i (detuning)

Exactly Solvable !

To simplify, make a global phase choice such that

Xy, = 4ty EE, /4 = X isreal (not required)

—_-

Simplest 2-level equations

iC,[4) = -3 XC, (&)
1gte) = AL, ) - 7 XC,(E)

Rabi Solutions for  C,(0)=2 C,(0) =0

a4, at| A
(8= cos B 41 B gia BE) s8¢/

[ X o e ~iAt]g
CD_H: "(‘:‘—}:QIVI Z}Q

X: Rabifreq. A: Detuning

N =\ X2+Al: Generalized Rabi freq.
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Atom-Light Interaction: 2-Level Approximation

To simplify, make a global phase choice such that

Xy, = 4ty €E,/4k = X isreal (not required)

.

Simplest 2-level equations

iC,[4) =-3 X ¢, (&)
1gte) = AL, ) - 7 XC,(E)

Rabi Solutions for  C,(0)=1,(,(0) =0

2t b, | —ia
C,[é):(dog %’FIIg'W T) Q/l t/2

[ X . bl ~iAL)
Colt -(\l—lgm—f)e >

X: Rabifreq. A : Detuning

N =\ X2+Al: Generalized Rabi freq.

Note: The Rabi Solutions give us the entire state,
in the lab (a’s) and rotating (c’s) frames

— -

We have maximum information about the system
and can make any predictions allowed by QM

Probabilities of finding the atomin |15 [2):

L
Riy=lcort = (1e4)+

%
R4\ = [yl = ’,lj 2(5_1 [4~cos 0t

R )

1\
1.0 £7°

0.5 T

+ Xt
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Atom-Light Interaction: 2-Level Approximation

Note: The Rabi Solutions give us the entire state, Note: All 2-level systems are isomorphic
in the lab (a’s) and rotating (c’s) frames

—_-

We have maximum information about the system

Equivalent Observables
Equivalent Phenomena

The Rabi problem was first solved in ESR and

and can make any predictions allowed by QM NMR, for spin-1/2 particles with a magnetic

moment X driven by a magnetic field 2

Probabilities of finding the atomin |17, [2): with interaction H=/R'
- 2-level systems are now often called qubits
_ L_tg,, Aty 1 X%
Rty =1¢,6)] =3 (14 t )+l:!—i‘l- Cog Dt
v LY Dressed States
(P)_H;\ = [cp_(:é\[ =3 L) [1 Cos -D-'L} The 2-level egs. in the RWA look like a S.E. with
O -ix
Ho, =4 ( 3 )
Rw ~1
& X A

The eigenstates of HRW a are called Dressed States

The DS are stationary only in the Rotating Frame.

In the Lab Frame (Schrodinger Picture) they are
periodic, oscillating w/frequency (v

15 End
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