Absorption and Dispersion in Gases #### **Approximations:** Let $$\omega_2^2 - \omega_2^2 = (\omega_0 + \omega)(\omega_0 - \omega) \approx 2\omega(\omega_0 - \omega)$$ $$\alpha(\omega) = \frac{e^{2/m}}{\omega_{o}^{2} - \omega^{2} - 2i\beta\omega} = \frac{e^{2/2m\omega}}{\omega_{o} - \omega - i\beta}$$ $$= \frac{e^{2}}{2m\omega} \frac{\omega_{o} - \omega + i\beta}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$ #### **Furthermore** $$n(\omega)^2 = 1 + \frac{N\alpha(\omega)}{\varepsilon_0} = 1 + \varepsilon, \varepsilon \ll 1$$ Expand to 1st order $(1+2)^{\frac{1}{2}} \approx 1+\frac{2}{2}$ #### **Putting it together** $$n_{\mathbf{R}}(\omega) = 1 + \frac{Ne^{2}}{4\mathcal{E}_{o}m\omega} \frac{\omega_{o} - \omega}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$ dispersive line shape $$N_{\mathbf{T}}(\omega) = \frac{Ne^{2}}{4\mathcal{E}_{o}m\omega} \frac{\beta}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$ Lorentzian line shape #### **General behavior:** ### **Putting it together** $$n_{R}(\omega) = 1 + \frac{Ne^{2}}{4 \epsilon_{o} m \omega} \frac{\omega_{o} - \omega}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$ dispersive line shape $$N_{\pm}(\omega) = \frac{Ne^2}{4\epsilon_0 m \omega} \frac{\beta}{(\omega_0 - \omega)^2 + \beta^2}$$ Lorentzian line shape #### **General behavior:** Mote: for $$\frac{|\omega_0 - \omega|}{|\omega_0 - \omega|}$$ absorption ∞ $\frac{1}{|\omega_0 - \omega|^2}$ We can have loss-less dispersive media Note: If we introduce the detuning $\Delta = (\omega_0 - \omega)$ we can rewrite $n_{\alpha}(\omega)$, $N_{\underline{T}}(\omega)$ as $$n_{R}(\Delta) = 1 + \frac{Ne^{2}}{4E_{0}m\omega} \frac{\Delta}{\Delta^{2} + \beta^{2}}$$ $$n_{I}(\Delta) = \frac{Ne^{2}}{4E_{0}m\omega} \frac{\beta}{\Delta^{2} + \beta^{2}}$$ From the above we see that $$N_{R}(\omega) < 1$$ for $\omega > \omega_{0} \Rightarrow \frac{C}{N_{R}(\omega)} > C$ Superluminal propagation? dispersion $$\propto \frac{1}{(\omega_o - \omega)}$$ for absorption $\propto \frac{1}{(\omega_o - \omega)^2}$ We can have loss-less dispersive media Note: If we introduce the detuning $\Delta = (\omega_0 - \omega)$ we can rewrite $n_{\alpha}(\omega)$, $N_{\underline{T}}(\omega)$ as $$n_{R}(\Delta) = 1 + \frac{Ne^{2}}{4E_{0}m\omega} \frac{\Delta}{\Delta^{2} + \beta^{2}}$$ $$n_{I}(\Delta) = \frac{Ne^{2}}{4E_{0}m\omega} \frac{B}{\Delta^{2} + \beta^{2}}$$ From the above we see that Note: $$N_{R}(\omega) < 1$$ for $\omega > \omega_{0}$ $\Rightarrow \frac{C}{N_{R}(\omega)} > C$ Superluminal propagation? ### **Free Electrons** Consider the limit ₩ ≫ №0 effectively unbound electrons This is a reasonable model of plasmas & metals In this limit we have $$\alpha(\omega) = \frac{e^2/m}{\omega_0^2 - \omega^2 - 2i\beta\omega} \approx -\frac{e^2}{m\omega} \Rightarrow$$ $$N(\omega) = \sqrt{1 + \frac{N(\alpha)}{\varepsilon_0}} \approx \sqrt{1 - \frac{Ne^2}{\varepsilon_0 m \omega^2}} \equiv \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$ We introduce the Plasma Frequency $$\omega_{P} = \sqrt{\frac{Ne^2}{\xi_{o}m}}$$ ## **Free Electrons** Consider the limit $\omega \gg \omega_0$ effectively unbound electrons This is a reasonable model of plasmas & metals In this limit we have $$\alpha(\omega) = \frac{e^2/m}{\omega_0^2 - \omega^2 - 2i\beta\omega} \approx -\frac{e^2}{m\omega} \Rightarrow$$ $$N(\omega) = \sqrt{1 + \frac{N(\alpha)}{\varepsilon_0}} \approx \sqrt{1 - \frac{Ne^2}{\varepsilon_0 m \omega^2}} \equiv \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$ We introduce the Plasma Frequency $$\omega_{P} = \sqrt{\frac{Ne^2}{\xi_{o}m}}$$ Let $$\begin{array}{c} \omega_{o} \ll \omega \ll \omega_{\rho} \\ |\omega_{o} - \omega| \gg \beta \end{array}$$ \rightarrow \sim or We now have $$\vec{E}(2,t) = \vec{E}E_0 e^{-i\omega(1-n(\omega)2/c)}$$ $$= \vec{E}E_0 e^{-i\omega t} e^{i(2/c)\sqrt{\omega^2-\omega_0^2}}$$ $$= \vec{E}E_0 e^{-i\omega t} e^{-b(\omega)2}$$ where $$b(\omega) = -\frac{i}{c}\sqrt{\omega^2-\omega_0^2}$$ Reflection at surface, ~ 1/b(ω) penetration depth ### **Completed:** - Fully classical description of fields & Atoms ### **Next Step:** - Semiclassical description Classical field Quantum atoms Self-Consistent Description Electromagnetic Field Atom/Molecule/Solid Source: xkcd.com ### **Completed:** - Fully classical description of fields & Atoms ### **Next Step:** - Semiclassical description { Classical field Quantum atoms **Self-Consistent Description** Electromagnetic Field -> Atom/Molecule/Solid **Needed:** Quantum theory of atomic response analogous to classical $\vec{r} = \alpha(\omega) \vec{E}$ Note: In QM the dipole is an Observable Observable = Hermitian operator Classical Field = C-valued vector Cannot plug into Wave Eq. for classical field! Wave Equation w/classical field & atoms $$\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 c^2} \frac{\partial^2}{\partial t^2} \vec{P}, \quad \vec{p} = N \vec{p}$$ How do we solve the mismatch? Repeated measurements of $\eta(t)$ Quantum fluctuations $\vec{\gamma}(\xi) = \langle \vec{\gamma}(\xi) \rangle + \Delta \gamma(\xi)$ where $\langle \vec{\gamma}(\xi) \rangle = \langle \psi(\xi) | \hat{\gamma}(\psi(\xi) \rangle$ mean fluctuations Note: Given (4(1=0)) and E, the mean (がは)) follows from the Schrödinger Eq., radiates coherently like classical がは) is a Real-valued vector (more later) we can plug it into the Wave Eq. ### Wave Equation w/classical field & atoms $$\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 C^2} \frac{\partial^2}{\partial t^2} \vec{P}, \quad \vec{P} = N \vec{p} \vec{t}$$ How do we solve the mis-match? Repeated measurements of $\eta(t)$ Note: Given (4(1)) and E the mean (がは)) follows from the Schrödinger Eq., radiates coherently like classical がは) is a Real-valued vector (more later) we can plug it into the Wave Eq. Wave Eq. w/classical field & quantum atoms $$\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 C^2} \frac{\partial^2}{\partial t^2} \vec{P}, \quad \vec{P} = N(\vec{p})$$ Note: - The Equations look very similar - Polarizability, index of refraction, etc will be very different in some regimes - Notably, the model is no longer linear in \hat{E} and will lead to phenomena like saturation and wave mixing - 🛆 (t) represents quantum fluctuations driven by the empty modes of the EM field, a process also responsible for spontaneous decay. Note: Do not identify $\langle \vec{n} \rangle$ and $\Delta \vec{n}$ with Stimulated and spontaneous emission. Those labels are not meaningful here. Wave Eq. w/classical field & quantum atoms $$\left(\nabla^2 - \frac{1}{C^2} \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{1}{\varepsilon_0 C^2} \frac{\partial^2}{\partial t^2} \vec{P}, \quad \vec{P} = N(\vec{p})$$ Note: - The Equations look very similar - Polarizability, index of refraction, etc will be very different in some regimes - Notably, the model is no longer linear in \vec{E} and will lead to phenomena like saturation and wave mixing - Δπ (t) represents quantum fluctuations driven by the empty modes of the EM field, a process also responsible for spontaneous decay. Note: Do not identify (and a with stimulated and spontaneous emission. Those labels are not meaningful here. #### **Atom-field interaction** **Hamiltonian:** Ha: time-independent atomic Hamiltonian vex: time-dependent driving term, non necessarily a perturbation Question: Time evolution of the atomic system? Is there a steady state? Schrödinger Eq.: Expand in basis $\{(\varphi_{\alpha})\}$ of eigenstates of H_{α} $$|4(t)\rangle = \sum_{n} a_{n}(t) |Q_{n}\rangle, H_{a}|Q_{n}\rangle = E_{n}|Q_{n}\rangle$$ #### **Atom-field interaction** **Hamiltonian:** time-independent atomic Hamiltonian Ver: time-dependent driving term, non necessarily a perturbation Question: Time evolution of the atomic system? Is there a steady state? Schrödinger Eq.: Expand in basis $\{ (\varphi_n) \}$ of eigenstates of \mathcal{H}_{α} $$|\psi(t)\rangle = \sum_{n} \alpha_{n}(t) |\varphi_{n}\rangle, \quad H_{\alpha}|\varphi_{n}\rangle = E_{n}|\varphi_{n}\rangle$$ Plug into S. E. 🌼 $$i\hbar \sum_{n} \dot{a}_{n}(t)|\phi_{n}\rangle = \sum_{n} a_{n}(t) \left[E_{n}+v_{ext}\right]|\phi_{n}\rangle$$ Take scalar product w/ | on both sides 🌼 in $$\sum a_n(+) \langle \rho_m | \rho_n \rangle$$ V_{mn} = $\sum_n a_n(+) \left[E_n \langle \rho_m | \rho_n \rangle \right] + \langle \rho_m | V_{ext} | \rho_n \rangle$ On vector-matrix form this can be written S.E. in $\{ | \phi_n \rangle \}$ rep. Still exact! Plug into S. E. 📦 Take scalar product w/ | n on both sides 🗼 in $$\geq a_n(t) \langle q_m | q_n \rangle$$ $$= \sum_n a_n(t) \left[E_n \langle q_m | q_n \rangle \right] + \langle q_m | V_{ext} | q_n \rangle$$ On vector-matrix form this can be written $ih\dot{\underline{a}} = \underbrace{H_{a}\underline{a} + \underline{V}\underline{a}}_{\text{S.E. in }} \{|\phi_{n}\rangle\} \text{ rep.}$ Still exact! Note: If \bigcup_{α} and $\bigvee_{\alpha \neq \beta}$ are known we can do - Perturbation Theory (OK for short times or "weak" driving fields) - Numerical integration of the S. E. - Few-level approximations to simplify and obtain analytical solutions outside the perturbative regime **General problem:** No analytical solution! #### **General observation:** - Atoms and molecules often behave as if they have a single, dominant transition frequency - We expect this when the freq. of the driving is resonant with one transition $|\langle q_n \rangle \rightarrow | \langle q_m \rangle|$ and far off resonance with all others. Interaction State space $$Dim(E) = 2$$, $\{11>, 12>\}$ **State vector** Schröd. eq. $$i \& \dot{a}_1 = E_1 a_1 + V_{41} a_1 + V_{12} a_2$$ $i \& \dot{a}_2 = E_2 a_2 + V_{21} a_1 + V_{22} a_2$ Interaction $$V_{12}(t) = -\vec{\eta}_{12} \cdot \frac{1}{2} (\hat{\epsilon} E_0 e^{-i\omega t} + c.c.)$$ $$V_{21}(t) = -\vec{\eta}_{21} \cdot \frac{1}{2} (\hat{\epsilon} E_0 e^{-i\omega t} + c.c.)$$ #### Parity selection rule **Definition:** $\vec{r} \rightarrow -\vec{r}$ is a reflection through the origin Atomic Hamiltonian $H \propto \frac{1}{r} \Rightarrow H(\vec{r}) = H(-\vec{r})$ Eigenstates $$\varphi(\vec{r}) = \varphi(-[-\vec{r}]) = \pm \varphi(-\vec{r})$$ two reflections "+" = even parity equals the identity "-" = odd parity The dipole $\overrightarrow{\uparrow}$ is a vector operator $\overrightarrow{r} \rightarrow -\overrightarrow{r}$ transforms like a vector when $\overrightarrow{r} \rightarrow -\overrightarrow{r}$ Thus $$\vec{\eta}(\vec{r}) = e^{\frac{2}{n}} = -\vec{\eta}(-\hat{r})$$ and $\vec{\eta}_{nm} = \int d^3r \, q_n^*(\vec{r}) \vec{\eta} \, q_m(\vec{r}) \neq 0$ only when nand have opposite parity Parity rule: No dipole moment in energy eigenstate! $$\vec{\eta}_{12} = \langle 1|\hat{\eta}_{12}\rangle, \quad \vec{\eta}_{21} = \vec{\eta}_{12}^{\dagger}$$ $$\vec{\eta}_{14} = \vec{\eta}_{22} = 0 \Rightarrow V_{11} = V_{22} = 0$$ #### We define $$\omega_{2_{1}} = \frac{E_{2} - E_{1}}{\pounds}, \quad E_{1} = 0$$ $$\mathcal{N}_{12} = \vec{R}_{12} \cdot \hat{\mathcal{E}} E_{0} / \hat{\mathcal{E}} \quad \text{interaction energy is } \hbar \chi$$ $$\chi_{21} = \vec{R}_{21} \cdot \hat{\mathcal{E}} E_{0} / \hat{\mathcal{E}} \quad \chi \quad \text{Rabi frequency}$$ Note: $$\begin{cases} \chi_{12}^{*} = \vec{\eta}_{21} \cdot (\hat{\varepsilon} E_{o}/k)^{*} \neq \chi_{21} \\ \chi_{21}^{*} = \vec{\eta}_{12} \cdot (\hat{\varepsilon} E_{o}/k)^{*} \neq \chi_{12} \end{cases}$$ Plug into $i\hbar \dot{a} = H_a a + Va$ (S. E.) to get $$i\dot{a}_{1} = -\frac{1}{2} \left(\chi_{12} e^{-i\omega t} + \chi_{21}^{*} e^{i\omega t} \right) a_{2}$$ $i\dot{a}_{1} = \omega_{21} a_{2} - \frac{1}{2} \left(\chi_{21} e^{-i\omega t} + \chi_{12}^{*} e^{i\omega t} \right) a_{1}$ Switch to rotating frame (slow variables) $$C_1(t) = a_1(t), \quad C_2(t) = a_2(t) e^{i\omega t}$$ $$iC_{1}(t) = -\frac{1}{2} \left(X_{12} e^{-i2\omega t} + X_{21}^{*} \right) C_{2}(t)$$ $$i\dot{C}_{2}(t) = (\omega_{01} - \omega) C_{2}(t) - \frac{1}{2} \left(X_{21} + X_{12}^{*} e^{i2\omega t} \right) C_{1}(t)$$ ### **Rotating Wave Approximation (RWA)** Very important, equivalent to resonant approximation Terms $\propto e^{\pm i 2\omega t}$ average to zero on time scale for variations in C_{1}, C_{2} $$i\dot{c}_{1}(t) = -\frac{1}{2} \times_{1}^{*} C_{1}(t)$$ $$\Delta = \omega_{1} - \omega$$ $$i\dot{c}_{2}(t) = \Delta C_{1}(t) - \frac{1}{2} \times_{1} C_{1}(t) \quad \text{(detuning)}$$ **Exactly Solvable!** ### Switch to rotating frame (slow variables) $$C_1(t) = a_1(t), \quad C_2(t) = a_2(t) e^{i\omega t}$$ $$iC_{1}(t) = -\frac{1}{2} \left(X_{12} e^{-i2\omega t} + X_{21}^{*} \right) C_{2}(t)$$ $$i\dot{C}_{2}(t) = (\omega_{21} - \omega) C_{2}(t) - \frac{1}{2} \left(X_{21} + X_{12}^{*} e^{i2\omega t} \right) C_{1}(t)$$ ### **Rotating Wave Approximation (RWA)** Very important, equivalent to resonant approximation Terms $\sim e^{\pm i 2\omega t}$ average to zero on time scale for variations in C_{1}, C_{2} $$i\dot{c}_{1}(t) = -\frac{1}{2} \times_{1}^{4} C_{1}(t)$$ $$\Delta = \omega_{1} - \omega$$ $$i\dot{c}_{2}(t) = \Delta C_{1}(t) - \frac{1}{2} \times_{1} C_{1}(t) \quad \text{(detuning)}$$ **Exactly Solvable!** To simplify, make a global phase choice such that $\chi_{1} = \frac{1}{12} \cdot \hat{\epsilon} E_o / k = X$ is real (not required) ### **Simplest 2-level equations** $$i\dot{C}_{1}(t) = -\frac{1}{2} \times C_{2}(t)$$ $$i\dot{C}_{2}(t) = \Delta C_{2}(t) - \frac{1}{2} \times C_{1}(t)$$ ### Rabi Solutions for $C_1(0) = 1$, $C_2(0) = 0$ $$C_1(t) = \left(\cos \frac{\Omega t}{2} + i \frac{\Delta}{\Omega} \sin \frac{\Omega t}{2}\right) e^{-i\Delta t/2}$$ $$C_2(t) = \left(i \frac{x}{s} \sin \frac{st}{2}\right) e^{-i\Delta t/2}$$ χ : Rabi freq. \triangle : Detuning $\Lambda \equiv \sqrt{\chi^2 + \Delta^2}$: Generalized Rabi freq. To simplify, make a global phase choice such that $\chi_{y} = \vec{n}_{y} \cdot \hat{\epsilon} E_{o} / k = \times$ is real (not required) ### **Simplest 2-level equations** $$\begin{split} &i\dot{C}_{1}(t) = -\frac{1}{2} \times C_{2}(t) \\ &i\dot{C}_{2}(t) = \Delta C_{2}(t) - \frac{1}{2} \times C_{1}(t) \end{split}$$ Rabi Solutions for $C_1(0) = 1$, $C_2(0) = 0$ $$C_1(t) = \left(\cos\frac{\Omega t}{2} + i\frac{\Delta}{\Omega}\sin\frac{\Omega t}{2}\right)e^{-i\Delta t/2}$$ $$c_2(t) = \left(i \frac{x}{2} \sin \frac{2t}{2}\right) e^{-i\Delta t/2}$$ χ : Rabi freq. \triangle : Detuning $\Lambda \equiv \sqrt{\chi^2 + \Delta^2}$: Generalized Rabi freq. Note: The Rabi Solutions give us the entire state, in the lab (a's) and rotating (c's) frames We have maximum information about the system and can make any predictions allowed by QM Probabilities of finding the atom in $|1\rangle$, $|2\rangle$: $$P_1(t) = |C_1(t)|^2 = \frac{1}{2} \left(1 + \frac{\Delta^2}{\Omega^2}\right) + \frac{1}{2} \frac{\chi^2}{\Omega^2} \cos \Omega t$$ $$P_{2}(t) = [C_{2}(t)]^{2} = \frac{1}{2} \frac{\chi^{2}}{\Omega^{2}} [\gamma - \cos \Omega t]$$ Note: The Rabi Solutions give us the entire state, in the lab (a's) and rotating (c's) frames We have maximum information about the system and can make any predictions allowed by QM Probabilities of finding the atom in $|1\rangle$, $|2\rangle$: $$P_{1}(t) = |C_{1}(t)|^{2} = \frac{1}{2} \left(1 + \frac{\Delta^{2}}{\Omega^{2}} \right) + \frac{1}{2} \frac{\chi^{2}}{\Omega^{2}} \cos \Omega t$$ $$P_{2}(t) = |C_{2}(t)|^{2} = \frac{1}{2} \frac{\chi^{2}}{\Omega^{2}} \left(\gamma - \cos \Omega t \right)$$ $$\mathcal{P}_{2}(t) = \left[C_{2}(t)\right]^{2} = \frac{1}{2} \frac{\chi^{2}}{\Omega^{2}} \left[\gamma - \cos \Omega t\right]$$ Note: All 2-level systems are isomorphic - **Equivalent Observables** - **Equivalent Phenomena** - The Rabi problem was first solved in ESR and NMR, for spin-1/2 particles with a magnetic moment $\vec{\mathcal{K}}$ driven by a magnetic field $\vec{\mathcal{B}}$ with interaction $H = \vec{\lambda} \cdot \vec{\beta}$ - 2-level systems are now often called qubits #### **Dressed States** The 2-level eqs. in the RWA look like a S.E. with $$H_{RWA} = 2 \left(\begin{array}{c} 0 & -\frac{1}{2} \\ -\frac{1}{2} \\ \end{array} \right)$$ The eigenstates of H_{RWA} are called <u>Dressed States</u> The DS are stationary only in the Rotating Frame. In the Lab Frame (Schrödinger Picture) they are periodic, oscillating w/frequency ω