OPTI 544 Solution Set 8, Spring 2021

Problem 1

(@)

(b)

(©)

We have |¥;,)=]0),|a), = @541 0) where |0) is the two-mode vacuum.

Substituting a, — r*as+t*a, and its H. C., and using the fact that a;, a3 commute with
a,, a; , we immediately get

W ) = ea(r&Ht&I)—a*(r*d3+t*&4)| 0)= Jlra)ai~(ra) a, e(za)a;—(ta)*a4|o>
=|ra),|ta),
Weuse d=X+iV, 4*= X —iY torewrite
1 A i A i 1 at > —i O > 1
E(ae ?+a’e “’): E[(X+1Y)e "’+(X—1Y)]e 4

=X=(e®+e™)+ lel_(ei"’— e )= Xcos(p)+Ysin(p)= X(p)

N =

We measure M = a3d;—aja, on the output. In the Heisenberg picture this is
equivalent to measuring an operator M’ on the input, where

A

)¢, +ra,)—(r'af +1'a3)(ra, +1a,)
( &1—&;&2)+t*r(fl1+&2—d1a2)+r*t(&1&;—&fr&2)

Note that in the last step we used 1=1/~2, r=i/~/2 as appropriate for balanced
homodyne detection. We now have

<M>=1<W|2<Q|M’|O(>2|l//>l= 1<l//|2<05|l(d1+&2—&1&;)|0(>2|l//>1
= (ylicaf +Go)'aly), = ||, (w|ae ™™ +afe"*™|y),
=2|a|, (Y| X(p+m2)y),= 2|a|(Xi(p+m2))
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d;&z + &1d]&2a2)|05>2 |W>1
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1&fa*a+&1&1a*a3|a>zlw>l



(d)

From this we find
AM? = (%)= (N1) =4 e P ({ Ko+ m2)") = (R (p+ 72)) )+ (W)

=4|a)? AX (p+m2)" +(N,)

Note: This result makes sense — it gives us reasonable limits when | |* >0 and
<N 1> =0 (coherent state only, vacuum in port 1), and when <N 1> >0 and | |*=0
(something other than vacuum in port 1, and vacuum in port 2).

Our quadrature squeezed state has AX,<1/2 and X (4470 3//
AAYI >1/2. As an example, let’s pick a state that hasA S
<Y1(O)> =0. When we change ¢ we measure not X, 4

but the combination of X, and ¥, that corresponds to @_> X
X(p+m2). Sketching this in the phase plane, we have

Thus AM* takes on its maximum value for ¢ =0, 7, 277,
and its minimum value for ¢ = /2, 372 .

Sketch:
Yl AY ¢+ m —~ &
e 8y A Y

_ ylaltoXt+m - —
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Note: For all this to hold, it is essential for the two fields to have the same frequency
(homodyning), so that both the operators a;a; and the states are time independent in the
Schrédinger picture.



Problem 2

(a)  The input state to the Beamsplitter is |W;,) = ¢4 ~%%|0), where |0) is the two-mode

vacuum. We use ai =ta3 +raf and its H. C. to find the state after the 15 BS:

‘lPL)ut> = (1) —(ta)*é3+(ra)&;_(ra)*&4| 0>

Before the 2 BS we have

‘1{;'. >_ e(tae””‘)&?—(tae”‘"f@+(r0£ei"’2)&I—(r0£ei“’2)*&4|0>
in) =

Next, for the 2" BS we use a3 = ds +rag , a; = ras +tag to get the output state,

| our) = expl(tae')(ta3 + rag) — (toe™) (¢ as +r ag)
+(roe'”)(rd3 + tdg) — (roee') (s +1'ae)]| 0)
— exp[(tzaei"" + rzaei(l)z)dg' _ (tZaei(pl + rzaeigoz)*&s
+ (rtoe'® + rtae’®)ag — (rtae™ + rtoe™?) ag)| 0)

=|as)| o)
Setting t=1/~2, r=i/~2 we find
— (12000 4 25000 = o igny — it e)2 i(o-0)2 _ ~i(pi—2)2
as=o(t e +re )—2(6 —e )—2e (e —e )

= ioee™sin(6p /2 — 1 /4) = 12 i sin(&¢ /2) — cos(6¢ /2)
'Ji L 1

o i o (Or— —i(—
o = 15(61(1’1 _ el(Pz) — liel((/’ﬁ(oz)/z(el((ol P2 4 P4 (02)/2)

= ioe™cos(8p /2 — 1t /4) = %e”"“[sin(&o 12)+cos(5p2)]

(b)  Wehave
(S)= (sl (el agas — a3as| cxe)l cxs)
= aTF[{sin(&p /2)+ cos(8¢ /2)} — {sin(5¢ /2) — cos(5¢ /2)}?]
o

= T[4 sin(S¢ /2) cos(8¢ /2)] =| o |* sin(dg) =| o |* 5



(©)

(d)

First we compute

(8%) = (ors|{oug| (a0 — a3as)?| xe) exs)

= (G4a6aeas + 43450345 — 2434603 s )

(use aa*=a*a+1)

= (G3a3a6as + G3G3asas + G4 e + a3 a5 — 248460345 )
=lag [t +as [+ o6 P+ as 2] asas
. Ay 2
Then, using (S) = (o P — | s P> =l s |* +| a5 [* =2 | ot [ o0 [P, we find
~ A2
AS*= (8~ (8) = as [ +|as

= ot * [cosX (0@ 12— 7t /4)+sinX(8p 12— 14)] =| o P

1
4

where 77 =|a [* is the mean photon

-

We set lo |2 OPpmin =| | = OQPpnin =

number in a coherent state with amplitude |« |.

This is the shot-noise limited sensitivity of a Mach-Zender interferometer with a coherent
state input. In quantum metrology, this is also referred to as the standard quantum limit.
Improved sensitivity can be achieved with squeezed states or other non-classical states of
light.

Note: This was a very long and fiddly calculation with many opportunities to mess up the math,

especially if not knowing ahead of time how it was supposed to come out. However, the
final result is a very important example of applied quantum optics.



Problem 3
(@) Wehave H()=ho@a+12)+hrA@) @G+a").
[4,a']=1 [4,a%a]=a

We need the commutators

[a*a]=-1 [a*a*al=—a*

(4, H{©)] = hwa + hA(7)
From these it follows that
[a*, H{©)] = —hwa* — hA(f)
(b)  Let o(f)=(y(9)|a|y®)). Then (Cohen-Tannoudji p. 240)

)= = {16 H0)) = - (heo (@) + RAD) = ~ieve ) ~ A0

This equation can be integrated to give

olf) = e—"“”j S =M dl +olt)e ™0 for  A#0

¢
to

oft) = ontg)e ™) for A=0

For the quadrature operators we have (X)) = %(0{ +o')=Re[]
A 1
(Y)(t)= (= o) =1Im[a]

Because we cannot do the integral in the expression for off) until the specific form of
A(?) is known, this is the best we can do.

(0 Let |p(0))=[a—an)]y®). Then

iS00 = ih 5 al0) i o0l
= iha L1 )) iMoot A0) Al o))~ ihat) o)
= iLa - o] |0} + [-heve() ~ hAW] W)



Now
i) = Alwo) =
i 1y0) = i — o) - A0 o)~ oot + 201 o)

The commutator [4, H(7)]= hwa+hA®F), so aH(E) = H@a+hoa+hA) .

Putting this together gives us

i) = U0 + heoi— et + hAGW0) ~ Thoet) + A W0)
= Ha— o0)]|y(0) + heola — a0)]| (1)) = (H + heo) y(2))

d d d
Now  —(p(0]¢0)) = (@)l o)) + (@] = 0)

= (000 2 g0 + 0] R gt =0

Conclusion: ||¢(?))|| is preserved over time.

@ Wehave dly(0)=aO)|yn) = |¢(0))=0

Since ||@(?))|| is preserved, it follows that ||@#))||=0 and therefore
aly(n) = )| y))

Note we already have an expression for off) in terms of an integral that involves A(f).
(€ At t=0 wehave |p0)=|¢0))=|(0)), with (0)=0.

We start in the coherent state |010)), then have A(f)#0 for ¢ €[0,7]. During this
interval we still have a coherent state, but o(f) is changing. At time 7 we have

oT) = _l-e—inJ'OT eiwt/ﬂ.(l")dl‘,

At t>T we also have a coherent state, with olt) = o T)e " ™=D



