OPTI 544 1st Midterm Exam, March 4, 2022

Problem 1

(a) During lectures we looked at the level structure for the 1 S to 2 P transition in Hydrogen, including fine and hyperfine structure. We eventually picked the $1 \mathrm{~S}_{1 / 2}(\mathrm{~F}=1)$ to $2 \mathrm{P}_{3 / 2}(\mathrm{~F}=2)$ transition. Draw a similar level diagram, but for the $1 \mathrm{~S}_{1 / 2}(\mathrm{~F}=1)$ to $2 \mathrm{P}_{1 / 2}(\mathrm{~F}=1)$ transition. (10\%)
(b) Assume the atom is interacting with $\vec{\varepsilon}_{x}$ polarized light (linear polarization along the x-axis). Indicate on your level diagram those transitions between the magnetic sublevels that are electric dipole allowed for this polarization. (15\%)

Problem 2

(a) Write out (do not derive) the expressions for the imaginary index of refraction, $n_{\mathrm{I}}\left(\omega_{0}\right)$, and the absorption coefficient $a\left(\omega_{0}\right)$, in the form appropriate for near-resonance excitation of a weakly polarizable medium of Lorentz atoms with transition frequency ω_{0}. (15%)
(b) Write out (do not derive) the expression for the absorption coefficient $a\left(\omega_{21}\right)$ in a medium of two-level atoms with transition frequency ω_{21}, assuming there are no collisions and the light intensity is well below $I_{\text {sat }}$. (10%)

Problem 3

A subset of the postulates of quantum mechanics say:
(a) A unique quantum state is described by a unique state vector $|\psi\rangle$, where $\langle\psi \mid \psi\rangle=1$.
(b) Let A be an observable with eigenvalues a and corresponding eigenvetors $|a\rangle$. Given the state $|\psi\rangle$, the expectation value of this observable is $\langle A\rangle=\langle\psi| A|\psi\rangle$.
(c) The probability of getting the outcome a when measuring A is $\mathscr{P}(a)=|\langle\psi \mid a\rangle|^{2}$. (Here and in the following we assume for simplicity that the eigenvalue a is non-degenerate.)
(d) When a measurement of the observable A has the outcome a, the state vector immediately afterwards is the eigenstate $|a\rangle$.
(e) The state vector $|\psi\rangle$ evolves according to the Schrödinger equation, $i \hbar \frac{d}{d t}|\psi\rangle=H|\psi\rangle$, where H is the Hamiltonian.

Write out equivalent expressions (a)-(e) when using the density matrix formalism. You may rely on results from class and/or the notes. (10% each)

