Atom-Light Interaction: 2-Level Approximation

Comparison to the Classical Lorentz atom

Goal: To understand why the Lorentz model works
so well, and to determine its limits of validity

Classical Equation of Motion:

o2 W\ o e will derive simiLar
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This gives us
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This gives us Compare to Classical Equation of Motion
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The two eqgs. have the same form if !
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Exactly like the classical equation,
but with modified polarizability !
End 02-04-2022
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Starting point — the Hydrogen atom
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We must therefore consider Selection Rules

Interaction matrix element

A
N [ oy < [0 g5 (97 0, )

Wavefunction parity is even/odd depending on £

Prgwm (7) = (- e Ppom (=7

= (|VI) canbenon-zeroonlyif (£-¢') is odd.

This is the Parity Selection Rule !
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interaction matrix eiement

A
NN v, [n8my o Jﬁ‘fs Dt P Gy,

Wavefunction parity is even/odd depending on £

Qo7 = (-1 By, (-F)

= (|V[) canbenon-zeroonlyif (£-2') is odd.

This is the Parity Selection Rule !

Next: We will find selection rules that derive from
the angular symmetry of the matrix element

We need to develop the proper math language
m) spherical basis vectors and harmonics

(real-valued)

Spherical basis:

(complex-valued)

Cartesian basis:
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Next: We will find selection rules that derive from
the angular symmetry of the matrix element

We need to develop the proper math language
m) spherical basis vectors and harmonics

. . - -9 - ) D) 2
Cartesian basis: &, §28, § =&,
(real-valued)
(( a . - o ( - ~
E.78=- 5 [&,ni8,)
. . T S IS B
Spherical basis: | £=8 al ;,aa)
(complex-valued) -« = -
\ a&:éo = 3‘&

Scalar Products

in the spherical basis

Homework: prove the relations

""J-_ g_'-’) — = _
£4207%,  Eq Bumdyy
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Next: Rewrite 7.2

9

in polar coordinates

Compare to the Spherical Harmonics
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Scalar Products in the spherical basis

Homework: prove the relations

_ 9 - = I~
£200%,  Eg Bymdy  E-F-lafdy,

Next: Rewrite 7., in polar coordinates

..9

Compare to the Spherical Harmonics
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This finally gives us E; in the spherical basis:

P2 (FEE -r[ 2 g,

q:=0.%1

End Lecture 02-04-2022 End math preamble

Back to the Matrix Elements

First:

electric dipole
interaction

VC)(-L—: - Q—F' _E.’("é,)

Py e [(F o, M electric field
E#)=38, (aﬁ-e o E,;f@ “) polarization &,
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Ve, w1 (Vi o (-1)3Y He )
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This finally gives us Z; in the spherical basis:

r= Z Cv‘-.é;)f,’ = Tﬁfi;f’ &

q:0,f4

End Lecture 02-04-2022 End math preamble

Back to the Matrix Elements

First:

- > = electric dipole
Vexs= ~eT El#) interaction

Py e [(F o, M electric field
E(¢) = 2 Es (aﬁ-e ot E,f(.’_ wt) polarization :‘.’,,‘l

l D 5 IRE
= LB, (£, 9t (-1)Q£Qe"" )

Ve, w1 (Vi o (-1)3Y He )
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This finally gives us 2; in the spherical basis:

r= Z CV'E.%J% ~T\F1: ZY,

9:0,%1 =0,t1

End Lecture 02-04-2022 End math preamble

Back to the Matrix Elements

First:

- > = electric dipole
Vexs= — ™ Et) interaction
electric field
polarization 6,,4

E(¢) = -E ( cTiot ézeerm;)

E (a (QLT( 1)9 Itoé‘)

Voo 7 (V0 LY )

The matrix element = overlap integral of the form

= {n'Lwm | VCX,I,_]V‘KM> Y
ext
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where the wavefunctions ¢, (7} -
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f

radial angular integral
integral

Thus, to within a constant factor

= Cew| Vi Wt )ty 9 pmy < v

From the RWA, we know the resonant terms are
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The matrix element = overlap integral of the form

= {n'Lwm | VCX,I,_]V‘KM> Y
ext

N

< f dar P I (Vi (17 % 1) ol
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where the wavefunctions @), (7} = R,p(r) Y, (6.9)

P

= (nlw | Vg [n2MY

- Q J‘DLJ\. (YL ) (YQ- "'Wb ,}Qy Qerut)y

7

radial angular integral
integral

Thus, to within a constant factor
= e Ve L Y Y (omy = ]
From the RWA, we know the resonant terms are
__T—l2>= |E"Vl'> ~r—[2>= |E'MI>

e
N [Rm> b 15> = [8m>
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The matrix element = overlap integral of the form . - "
And thus in the RWA we get  (use (¥,")"=(-1)"Y;"

e
V’-l = <'\’Z'Wl‘ l VCX+[n2M>

Vexs

N —
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where the wavefunctions @), (7} = R,p(r) Y, (6.9)

dropping the

- ‘ factor (~1\%
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= R [oha () O ey et 7 Vo« fda () Y < (1,5 Lmignd
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integral

Clebsch-Gordan coefficients
Thus, to within a constant factor
Next: We can understand this as conservation of

Vg_l - < z(m|I %96—;03'&-‘_(_1)%»/1.‘3 eiW‘b lQm> - vl;‘:
angular momentum when a photon is absorbed

or emitted
From the RWA, we know the resonant terms are -
12>= 18w hy=10'wm) . . .
i N Selection Rules for Electric Dipole

e’ . Ll
L 14 = (2m> SRV Transitions
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Reminder: Addition of Angular Momenta

[4,M,>
Let ﬁ'=3’4+§1 =) eigenstates 14y, Y
lgm>

We can write [gm> in the basis [¢;M,> Iy,

identity

lgm> = 345 Ay < g my; Sy my [1gm D>
VV‘,,ML
= D LiaMe; oy [ md 13 myg sy
M1W|L *
Clebsch-Gordan coefficients

/] < [} . . .
CG’s are non-zero when W-dal €34 4atds
Conservation of
Angular Momentum MyeMy =M

Going back to the matrix element V, =0

when [13) combined w/|¢w} is consistent w/ [¢'m' >

0 4 4

“photon” AM ground state AM excited state AM

The corresponding Selection Rules are

£,“2 ':O,Til m'-m =g_; Q.:O,ii

Combining with the Parity Rule, this gives us the

Electric Dipole Selection Rules




