OPTI 544 Solution Set 3, Spring 2021

Problem 1
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The equations of motion for the probability amplitudes in the RWA, using the “slow’
variables and setting A=6=0, are
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Note: If b,(r)=0 then b, = by = b,, b, are constant

If the driving field does not lead to a non-zero probability amplitude in the excited state
‘2), then there can be no induced dipole moment . This is because ‘1> and ‘ 3> of necessity
must be of the same parity to allow for Raman coupling in the first place. That means there
can be no absorption or emission of light, and as a result the wave propagates without loss
of intensity.

Note: The state found in (b) above is referred to as a “dark state”.



Problem 2

(a) Taking the outer product of the state vectors we find
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(b) To check for purity we can compute p2 and then check if p2# p or Tr[p?]<1,either of
which would tell us that the state is mixed. For example, in this case it is straightforward
though somewhat tedious to show that Tr[p2]= (19— 22 )/30=0.539 <1, which tells
us the state is mixed.

There is an easier way if we know the ensemble decomposition, p = X p |y ) (v .
Namely, that p is mixed if one or more of the ‘1// k> are linearly independent of the other.
In our case we can confirm this by inspection, since |l//1> is confined to the {]1>, 2>}
subspace while |y,) has a component along |3).




Problem 3

(a) The Hamiltonian for our 2-level system has the form

0 —L (212 e + y3eien)

H=n ' _
—%()(21 e"“”"‘){f‘ze"‘”) W7

Starting from ihp=[H,p] we get ihp,;= Zk(Hikij— p,»kaj) , L, j,ke{l,2}.
Applying this to the elements of the 2-level density matrix, we get
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We set A=(w, - a)), X=X, Xu=x ,drop the terms o e*?* and use Prn=—pi,

P12 = P> . This gives us the desired result
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(b)  The Density Matrix has 2 real-valued populations and 2 complex-valued coherences, which
suggests a total of 6 real-valued variables that must be known in order to specify p.
However, the constraints p,, =1—p;; and pi, = py; allow us to express 3 of the 6 variables
in terms of the other 3. This leaves us with a total of 3 real-valued variables necessary to
specify an arbitrary Density Matrix, whether it is pure or mixed.

(c) Major approximations implicit in the above result:

(1) The Electric Dipole Approximation (inherent in the form of H)
(i1) The 2-Level Approximation
(iii)  The Rotating Wave Approximation



Problem 4

In steady state the Density Matrix Equations reduce to
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We start by solving for the coherences in Equation (iii)
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Substituting in Equation (ii), using P, — P11 =2p»—1, and solving for p,, we get
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Sanity check: p;+ pn, =1. With that we have the steady state solutions
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