Be%;m. O1-19-202
Optical Physics

Light —Matter Interactions

We have a hierarchy of descriptions at increasing sophistication

- Classical Classical light, classical matter
- Semiclassical Classical light, quantum matter
- Quantum Quantum light, quantum matter

When choosing a description, there are several possible philosophies

Purist: Always use most complete description possible
Minimalist: Only use quantum mechanics when necessary (pedantic)
Pragmatic: Use quantum or classical description,

based on whatever is simplest and works.
In this course we study classical, semiclassical and fully quantum descriptions in

turn, with the pragmatic attitude that one will most often use the simplest theory
that works for the problem at hand.

Classical Theory of Light —Matter Interaction

Light affects the particles that make up the medium, and the medium affects the
light. Our goal:

Self-consistent, fully classical description

Electromagnetic field —— Atom/molecule/solid
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Motivation:
We will

- Develop concepts (a(w), n, x)

- Develop intuition (useful later for quantum description)

- A classical description is often adequate, and frequently accurate

- A quantum theory has classical limits, identifying regime of validity

- The classical description is a useful jump-off point for non-linear optics

Classical Linear Optics: Milonni & Eberly chapters 2 & 3
Classical Nonlinear Optics: Milonni & Eberly chapters 17
The Electromagnetic Field Basic equations in SI units

Maxwell’s Equations: (no free charges, no currents —p dielectrica)

(1) V:-D=p=0 D: Dielectric displacement
) V-B=0 B: Magnetic induction
(iii) VxE=-B/dt E: Electric field

(iv) VxH=0D/dt+]J=dD/ot H: Magnetic field

Material Response

B=uH+M «4— non-magnetic = M=0

D=¢E+P <«— info about response in macroscopic
dipole moment density, polarization density




We need equations that describe

- the behavior of E for a given P
- the medium response P for a given E

Derivation of the wave equation

Take the curl of (iii), then use (iv)

B 9 9’D
VX(VXE)=—VXE=—E(VXB)=—M0?

Next, use the identity Vx(VxE)=V(V-E)- V°E to obtain

7D

V(V-E)-V’E=-y, "

Finally, let D = ¢,E+ P and use gyu, =1/c* to obtain

19*E 1 9°P This is the wave equation,

-V(V-E)+V’E= 2 T 2 still exact in this form.
0

Transverse fields

The definition of a transverse field is that V- E=0.

This is true for example for a plane wave, E(r,r)=E(r) e*r E(I)J_k, where
Re[E(r,7)] is the physical field. The wave equation can now be simplified to

2 2 Here, the polarization density P is a
’ 1 ¢ 1 9P ' :
VE-5-——SE=—75— source term for the field that arise due to
c” ot g, Ot .
the response of the medium.
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Note:  This version of the wave equation can be a poor approximation in non-
isotropic media

Isotropic media

In the absence of a preferred direction the induced polarization P must be parallel
to the driving field E._ In the regime of linear response and the otherwise most
general case we have

D(t) = &,E(1)+ P(t) = &,E(t) + &, [_dr'R(t —t)E(¢)

where R(z-1") is the response function that describes the memory that the medium
has of the history of the field. We have R(t)=0 for 7<0, and R must be a scalar
function if the medium is isotropic.

Now take the divergence on both sides and use Maxwell eq. (i)

V-D(t)=¢,V-E(t)+& [ _diR(t-t)V-E(t)=0=
V-E(t)=-["_di'R(t-1)V-E(t) forallt

It follows that V-E(r)=0 for all 7, or R(t)=-26(t) = D(1)=0.

Note
- If R(t)x () (instantaneous response) then &, [ di'R(t—1"E(t') = e, xE(t),
where x is the electric susceptibility.
- R(r)=-24(t) is an example of negative susceptibility, y <0, which does
not occur except in certain engineered metamaterials.

We conclude: Electric fields are always transverse in
linear, isotropic dieldctric media.

Note: This does not apply to crystal optics, as many crystalline materials are
NOT isotropic. ~ Also not to inhomogeneous media, in particular
waveguides.



Wave Equation in Free Space V2E - ——5E=0
c” ot

—iwt

We adopt a monochromatic trial solution E(r,7)=E(r)e

2
w

VZE,(r)e” + C—2E0 (r)e”™ =0

This gives us an equation for the spatial component alone

VZE,(r)+k’Ey(r) =0, k=w/c

This equation has plane wave solutions Eo(r) = gEOeik'r’

k|=w/c

Note that an understanding of plane wave propagation is broadly applicable, since
any arbitrary field Ey(r) has a plane wave decomposition.

Wave Equation in Optical Cavities

Optical cavities are an important special case, for which we need to solve the wave
equation subject to boundary conditions. See Milonni & Eberly p. 23-27 for the
case of a rectangular cavity, Appendix 11.A for Fabryt Perot Etalons, and Chapter
14 for spherical mirror laser resonators.



Wave Equation in @k space (Fourier domain)

2 2
VzE_izazE= 12(9?
c” ot gy Ot

E(r,t)= [ doe™ [ .d’ke' " E(k,w)
P(r.0)= [, dwe™ [ .d’ke'*" P(k,w)

Note: E(k,a)) and P(k,a)) are the temporal and spatial Fourier Transforms of
E(r,7) and P(r,?).

We substitute into the wave equation, and use

2
V25 E(k,0) = k¢’ E(k,0), jt_zeiw’E(k,w) =-w’e E(k,0)

This gives us
Jydo e [ d*k (-k*)e' " E(k,o) -Cl—z Jydo (-0 )e . d*ke'*™ E(k,0)

1 ) ikr
v Jydo e (-0°) [ d ke’ P(k,0)

But this equation can hold only if

2 2
KE(k, 0) - 2 E(k,0) = —
C EC

P(k,w)

2

This is the wave equation in the Fourier domain. It is just as complete a
description as the wave equation in real space.



Note:

Note:

Note:

Note:

In the Fourier domain the wave equation is purely algebraic — it contains
no derivatives or integrals.

In the absence of a polarizable medium, P =0, the wave equation is local
in Fourier space, i. e. the field at k, w does not depend on the field at
k', w". This holds also for isotropic media with a linear response.
medium is linear but non-isotropic, e. g., an isolated dipole in vac

then light can be scattered from one plane wave into another with the same
frequency but different wave vector, ® = ®” and k #k”. If the response is
nonlinear then P can lead to nonlinear wave mixing between fields with
different frequency.

In the presence of a polarization density P = 0, the relationship between |k|
and o - the dispersion relation — is not as simple as in vacuum and must be
worked out based on a microscopic theory of the medium response, i. e. we
must find the P(k, ) that results from a given E(k, ).

The Fourier representation of a plane wave is

E(k,w) = ¢E,0(k, —k)d(w, - w)

In this course we will focus mostly on plane waves and their close cousins,
Gaussian beams and wavepackets.



Theory of Atomic Response

So far we have developed a model for the electromagnetic field. Next, we need a
model of how the microscopic constituents of the medium — the individual atoms —
respond to the field. This will allow us to find the polarization density P as a
function of the electric field E.

Classical Atom: Simple model: a nucleus and a single electron

Equation of motion in external field

en . e
no—7>,
\ Lorentz force F=g(E+vxB)
r
r, e T
ori-gin ~ 0 if non-relativistic
Newton: d>
»H  m, s e¢E(r,,1)+F, (r,,)
4

(11) m d_r = _eE(rn’t) - Fen (ren)

"t "

As usual for the two-body problem, we can rewrite these equations on a form that
provides better physical understanding. We define new variables,

mm

e n

X=r,=r,-r, m= ~m,,
m, +m,
m,x, +m,r
R=—¢e  —nn, M=m,+m, ~m,,
M

where



x: relative coordinate m: reduced mass

R: center of mass coordinate M : total mass

We substitute these in the equations of motion, which can then be cast in the form

This is a basic result with no approximations!

set R=r,, x=r,,
In Milonni & Eberly, main body of text they
throw away the eq. for R

We can do better,and - clarify the approximations that we will make

- explore the consequences of the C.O.M. equation

The Electric Dipole Approximation

This is a key element in almost all of Optical Physics and Quantum Optics.

atomic dimensions x| ~1 A << optical wavelengths A ~lum =10*A




This implies that the electric field is nearly constant over the extent of an atom.

In this situation it is a good approximation to do a first order expansion in X:

t)~E(Rt Note ¢ (% o)

m, m,
E( m )T T ’ (Ex) (%K
= 5 3
E(R LI z) ~ER.0)+ %(x V)E(R.7) £y
M where &: isdhe ith

If we plug these into the equations for R, x we get cariesan component ol x

M j R=e(x-V)E(R,?) Center-Of-Mass

d2

m-x=cER, N+ M ox - VIER, 1)+ F.(x)  Rel. Coordinate
t?

T ot order in X [small)

Physical Interpretation

p=ex is the electric dipole moment of the atom

The Center-Of-Mass equation can be written on the form

M j R~(p-V)ER,1)=F=-VV(x,R,?)

F: Dipole Force

V(x,R,t)=-p-E(R,1): Interaction Energy

I. e. the Center-Of-Mass motion is governed by the Dipole Force, which is the
gradient of the interaction energy between the dipole and the field.

10



The Relative Coordinate equation can be simplified by keeping only the leading
terms in X,

mj—x =eE(R,1)+F,,(x)=-V,V(x,R,t)+ F.,(x)
t2

Pulling it all together, we get our final result

M j—R =-Vi:V(X,R,1) Center-Of-Mass
t.2
d? :
md—x =-V.V(x,R,1)+F,,(x) Rel. Coordinate
t2
V(x,R,t)=-p-E(R,?) Electric Dipole Interaction

Note:

- The Center-Of-Mass equation is the foundation for a lot of important
experimental techniques in the area of laser cooling and trapping.
not explore this further during lectures in this course, but may rev
homework. A more extensive discussion can be found in Steck’s online
notes.

- The equation for the internal degree of freedom allows us to find p as a

function of E, and is thus the foundation for our theory of electromagnetic
wave propagation in polarizable media.

11



The Electron Oscillator/Lorentz Atom

Consider a simple model of a classical atom, in which the electron is harmonically
bound to the nucleus

2 2
noW'e Fen:_maFX

\ resonance frequency

origin

Note: ~ We should regard this as a model of the response of an atom, rather than
a classical model of the atom itself.
End or-1y-2p99
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Now substitute the harmonic restoring force F, =-magx into the equation of
motion for X to find

d—2X+ W>X = iE(R 1)
dr* 0 m ’

We can combine this with P=Np, p=ex

where N is the Number Density of atoms. This relates the macroscopic quantity
P to the microscopic quantity x

We now have

Maxwell’s equations Maxwell-Lorentz equations
— - We can seek self-consistent
Lorentz model solutions to wave propagation

Later in the course we will replace the classical model of the atom with a full
quantum model, which will lead to the analogous Maxwell-Bloch equations.

13



Classical Model of Absorption

Maxwell’s equations predict than an oscillating dipole will loose energy by
radiating an electromagnetic field. It is therefore necessary to refine our electron
oscillator model to include damping.

(®)
8
8

o)
00
8
©)
@)

Destructive interference in all
directions except forward.

23
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(©)
(©)

“«— ) —>

The Lorentz Model: - add an ad hoc friction term w/ 3 << m,
(sub- critical damping)

d? - this is our basic equation

d 2 e
Rk +2p 7R TWOX= P E(R.7) for atomic response
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Solution of the Equation of Motion for x:

Homework:  Solve the equation of motion for x with
Driving field E(R,?)=2E,e ("™,

Trial solution x(R,f)=a e (™),

where a is a complex amplitude. Show that a=-¢ - (¢/ 1721 )Eq
0" —w, +2ifw

15



Physical quantities:

Re[E(R,?)] =E€E, cos(wr —kz)

Re[p(R,7)] =Re[ex(R,t)] = €E {(wé —a)z)cOS((Ot—kz)+2ﬁwsin(a)t—kz)
) s 0 m (0)3—0)2)2+4/32w2

Note: Here we have assumed that the polarization vector £ is real, i. e. that the
electromagnetic field is linearly polarized.

Note: p and E generally oscillate out of phase

w<<w, = p&E in-phase
w=w, = p lagsEby r/2 [ bestto stick with complex notation!

>0, = p lagsEbyrx

. A -§
Complex Polarizability Ragic V‘QLDCLtOn : /X\- = O((Oﬂ E

We define the complex polarizability o) as follows

p=ex =eae (PR = o(w)eEye ()

e’ /m e oy - +2ifw

w5 — o =2ifo  m (5 —w2)2 +4B°0°

It is then easy to show that if E(r,t)zéEoe"'(w"kZ)

equation reduces to

and P= Np, then the wave

16



2 2
c

2 2
[_kz + w )éEoei(wtkz) __ o No(w) éEOe—i((ut—kz)
&g

We thus have plane wave solutions, with a dispersion relation k=n(w)w/c that
obeys

Here n(w) is the complex index of refraction.

17



Complex Index of Refraction

Let n(@) =ng(w)+i n; (o)

and consider the propagation of a plane wave

E(Z,[) = éEoe—i(wt—kz) _ éEOe—i(wt—[n(w)w/C]Z) — éEOe—n,(w)a)z/ce—iw(;_nR(w)z/C)

We can now identify

¢ <4— attenuation length
wn; (o)

¢ <4— phase velocity
ng (w)

Absorption

The intensity of the plane wave electromagnetic field E is

2 _1 (O)e—an(w)coz/c Eloe—a(a))z

(0]

L, (2) = s g (@)cgo |E(z.1)

. t"")' . *) This is correct
where the absorption or extinction coefficient is given by ne af{ects ene rg¥

deusily in Lha meivm

9

| 2 |
a(®)=2n, (o) w/cz%“’ImIL(HN‘;‘—(“’)} J|

Possibility of Gain? Endl Of-19-2022
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Absorption and Dispersion in Gases

w, — 0| << 0,, © - near-resonance
Approximations
‘n(w)‘ ~1 - weakly polarizable
Let w; — 0 =(w, + 0)(0, - 0) = 20(0, - 0) =
2 2 2 .
(@)= — e’ /m e 2mo & w,-w+if

0 -0 -2ifo  ©,—0—if 2mo (@, —0)" + B

19



Furthermore, n(w)” =1+ =1+¢& € small

We expand to first order, (1 +8)1/ o1+ g2, to get

Ne* W, —®

np(w)=1+
R( ) 480m0)(a)0—a))2+ﬁ2

<«— dispersive line shape

2
n,(w)= Ne p R <— Lorentzian line shape
4€,mo (w, — )"+

General behavior:

ng (o) ' | n (o) |
dispersion absorption
1 o} 28 2
0
-10 5 0 ; 10 -10 -5 0 5
(w-wy)/B (w-wy)/B
. . 1
Note: dispersion o<
for |w,—w|>>f
: 1
absorption o< 5
(0, - )

This is the reason we can have loss-less dispersive media.

20
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Note:  Glasses and dielectric crystals tend to have strong transitions at UV
wavelengths.

Question to class: From the above, we see that

ng(w)<1l for w>w, = the phase velocity >> ¢

ng()

How do we interpret this result physically?

Free Electrons

Consider the limit @ >> @, , corresponding to effectively unbound electrons.
This is a reasonable model of plasmas and metals.

We now have

& E,m 0]
_ Né*
o= |—
Eym
Wy << W << Wp . :
Let = n(w) purely imaginary, but no loss!
@, — | >> P

21



E(Z’ l’) — éEOe_iw[t_n(w)Z/C]

= éEOe_i“”e_b(w)Z; b(w)=—i w* — a)f) /c

We now have

where b(w) is real-valued and positive.

Note: This result shows that the wave is not propagating, yet there is no loss. The
implication is that a wave traveling through vacuum will be reflected at the
boundary of a medium of this type. The penetration depth is ~1/b(w).

Metallic\Coatings
Unpolarized Light, 45° AOI
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Note: If ng(w)~1 and

Fast light:

dng () 1 then v, <<c slow light
dw v, >>c fastlight

According to the electron oscillator/Lorentz atom model, we can have
dnr(w) dng(®)
dw dw

~1 near a

<0, and also ®

anomalous dispersion,

resonance.

However, in this situation we always have significant absorption,
which renders the resulting faster than light pulse propagation much
less interesting.

Note: The group velocity is the propagation velocity of a smooth pulse with
finite spectral width. This situation is unphysical because such a pulse
must have infinite leading and lagging tails. A physical pulse used for
communication must have a true “leading edge” where it turns on.
Information thus travels at the “edge velocity”, which is always less than c.

Slow light: In the electron oscillator model, large values of nR(a)) /da) occurs

only near resonance, have the wrong sign, and are accompanied by
strong absorption. This seems to rule out extremely slow light
propagation. However, it is possible to overcome this limitation by
using a quantum trick involving 3-level atoms.

Signal: weak field at o,
® @p
’ Pump: strong field at @,

Here, the presence of the strong pump field modifies both the
dispersion and absorption of the weak signal field. The resulting
behaviors look qualitatively like this:

23



Thus the signal has an extremely steep dispersion curve and low group
velocity at @, =@, along with near-zero absorption. The tradeoff is that

these types of Raman resonances tend to be very narrow, which severely
limits the pulse bandwidth and duration.

24



The Dipole Force

We can use the Electron Oscillator model to calculate the force that light exerts
upon an atom.

We start from the electric-dipole interaction energy —p-E

E=Re[éE (R)er]

Recall that the physically real quantities are
p=Re[a(w)éE (R)e ]

e’ A+iP
where the polarizability o) = =, A=) - .
2mo A+ f
In that case
eE(R)  A+if .
Vix,R,t)=—p-E=Re| -€ e EE (R )e it
(xRo)=-p B=Re| 62w A28 [l ()

_ A A 12 R . X |
— 2;; (Az o Re[8E (R)eo | + e f 5 Re[£E,(R)e |Im[é EO(R)e_,wt]]

Averaging over one cycle of the electric field gives us
<Re [E, (R)e ™™ ]2> 1B, (R)

(Re[£E, (R)e™ | Im|£E, (R)e™ ])=0

Substituting this gives us the cycle-averaged light shift potential and dipole force,

2 2
V(X,R,t):_e |E()(I')| 2A >
dmow AN+
e’ 2 A
F,,(R)==VyV(x,R,1)= 4meR‘EO(r)‘ Py
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Note: For |A|>>f3 we have Ve1/A. This means we can have a substantial light

shift and dipole force without absorption and loss, by tuning far from
resonance.
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