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Optical Physics

Light —Matter Interactions

We have a hierarchy of descriptions at increasing sophistication

- Classical Classical light, classical matter
- Semiclassical Classical light, quantum matter
- Quantum Quantum light, quantum matter

When choosing a description, there are several possible philosophies

Purist: Always use most complete description possible
Minimalist: Only use quantum mechanics when necessary (pedantic)
Pragmatic: Use quantum or classical description,

based on whatever is simplest and works.
In this course we study classical, semiclassical and fully quantum descriptions in

turn, with the pragmatic attitude that one will most often use the simplest theory
that works for the problem at hand.

Classical Theory of Light —Matter Interaction

Light affects the particles that make up the medium, and the medium affects the
light. Our goal:

Self-consistent, fully classical description

Electromagnetic field —— Atom/molecule/solid
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Motivation:
We will

- Develop concepts (a(w), n, x)

- Develop intuition (useful later for quantum description)

- A classical description is often adequate, and frequently accurate

- A quantum theory has classical limits, identifying regime of validity

- The classical description is a useful jump-off point for non-linear optics

Classical Linear Optics: Milonni & Eberly chapters 2 & 3
Classical Nonlinear Optics: Milonni & Eberly chapters 17
The Electromagnetic Field Basic equations in SI units

Maxwell’s Equations: (no free charges, no currents —p dielectrica)

(1) V:-D=p=0 D: Dielectric displacement
) V-B=0 B: Magnetic induction
(iii) VxE=-B/dt E: Electric field

(iv) VxH=0D/dt+]J=dD/ot H: Magnetic field

Material Response

B=uH+M «4— non-magnetic = M=0

D=¢E+P <«— info about response in macroscopic
dipole moment density, polarization density




We need equations that describe

- the behavior of E for a given P
- the medium response P for a given E

Derivation of the wave equation

Take the curl of (iii), then use (iv)

B 9 9’D
VX(VXE)=—VXE=—E(VXB)=—M0?

Next, use the identity Vx(VxE)=V(V-E)- V°E to obtain

7D

V(V-E)-V’E=-y, "

Finally, let D = ¢,E+ P and use gyu, =1/c* to obtain

19*E 1 9°P This is the wave equation,

-V(V-E)+V’E= 2 T 2 still exact in this form.
0

Transverse fields

The definition of a transverse field is that V- E=0.

This is true for example for a plane wave, E(r,r)=E(r) e*r E(I)J_k, where
Re[E(r,7)] is the physical field. The wave equation can now be simplified to

2 2 Here, the polarization density P is a
’ 1 ¢ 1 9P ' :
VE-5-——SE=—75— source term for the field that arise due to
c” ot g, Ot .
the response of the medium.
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Note:  This version of the wave equation can be a poor approximation in non-
isotropic media

Isotropic media

In the absence of a preferred direction the induced polarization P must be parallel
to the driving field E._ In the regime of linear response and the otherwise most
general case we have

D(t) = &,E(1)+ P(t) = &,E(t) + &, [_dr'R(t —t)E(¢)

where R(z-1") is the response function that describes the memory that the medium
has of the history of the field. We have R(t)=0 for 7<0, and R must be a scalar
function if the medium is isotropic.

Now take the divergence on both sides and use Maxwell eq. (i)

V-D(t)=¢,V-E(t)+& [ _diR(t-t)V-E(t)=0=
V-E(t)=-["_di'R(t-1)V-E(t) forallt

It follows that V-E(r)=0 for all 7, or R(t)=-26(t) = D(1)=0.

Note
- If R(t)x () (instantaneous response) then &, [ di'R(t—1"E(t') = e, xE(t),
where x is the electric susceptibility.
- R(r)=-24(t) is an example of negative susceptibility, y <0, which does
not occur except in certain engineered metamaterials.

We conclude: Electric fields are always transverse in
linear, isotropic dieldctric media.

Note: This does not apply to crystal optics, as many crystalline materials are
NOT isotropic. ~ Also not to inhomogeneous media, in particular
waveguides.



Wave Equation in Free Space V2E - ——5E=0
c” ot

—iwt

We adopt a monochromatic trial solution E(r,7)=E(r)e

2
w

VZE,(r)e” + C—2E0 (r)e”™ =0

This gives us an equation for the spatial component alone

VZE,(r)+k’Ey(r) =0, k=w/c

This equation has plane wave solutions Eo(r) = gEOeik'r’

k|=w/c

Note that an understanding of plane wave propagation is broadly applicable, since
any arbitrary field Ey(r) has a plane wave decomposition.

Wave Equation in Optical Cavities

Optical cavities are an important special case, for which we need to solve the wave
equation subject to boundary conditions. See Milonni & Eberly p. 23-27 for the
case of a rectangular cavity, Appendix 11.A for Fabryt Perot Etalons, and Chapter
14 for spherical mirror laser resonators.



Wave Equation in @k space (Fourier domain)

2 2
VzE_izazE= 12(9?
c” ot gy Ot

E(r,t)= [ doe™ [ .d’ke' " E(k,w)
P(r.0)= [, dwe™ [ .d’ke'*" P(k,w)

Note: E(k,a)) and P(k,a)) are the temporal and spatial Fourier Transforms of
E(r,7) and P(r,?).

We substitute into the wave equation, and use

2
V25 E(k,0) = k¢’ E(k,0), jt_zeiw’E(k,w) =-w’e E(k,0)

This gives us
Jydo e [ d*k (-k*)e' " E(k,o) -Cl—z Jydo (-0 )e . d*ke'*™ E(k,0)

1 ) ikr
v Jydo e (-0°) [ d ke’ P(k,0)

But this equation can hold only if

2 2
KE(k, 0) - 2 E(k,0) = —
C EC

P(k,w)

2

This is the wave equation in the Fourier domain. It is just as complete a
description as the wave equation in real space.



Note:

Note:

Note:

Note:

In the Fourier domain the wave equation is purely algebraic — it contains
no derivatives or integrals.

In the absence of a polarizable medium, P =0, the wave equation is local
in Fourier space, i. e. the field at k, w does not depend on the field at
k', w". This holds also for isotropic media with a linear response.
medium is linear but non-isotropic, e. g., an isolated dipole in vac

then light can be scattered from one plane wave into another with the same
frequency but different wave vector, ® = ®” and k #k”. If the response is
nonlinear then P can lead to nonlinear wave mixing between fields with
different frequency.

In the presence of a polarization density P = 0, the relationship between |k|
and o - the dispersion relation — is not as simple as in vacuum and must be
worked out based on a microscopic theory of the medium response, i. e. we
must find the P(k, ) that results from a given E(k, ).

The Fourier representation of a plane wave is

E(k,w) = ¢E,0(k, —k)d(w, - w)

In this course we will focus mostly on plane waves and their close cousins,
Gaussian beams and wavepackets.



Theory of Atomic Response

So far we have developed a model for the electromagnetic field. Next, we need a
model of how the microscopic constituents of the medium — the individual atoms —
respond to the field. This will allow us to find the polarization density P as a
function of the electric field E.

Classical Atom: Simple model: a nucleus and a single electron

Equation of motion in external field

en . e
no—7>,
\ Lorentz force F=g(E+vxB)
r
r, e T
ori-gin ~ 0 if non-relativistic
Newton: d>
»H  m, s e¢E(r,,1)+F, (r,,)
4

(11) m d_r = _eE(rn’t) - Fen (ren)

"t "

As usual for the two-body problem, we can rewrite these equations on a form that
provides better physical understanding. We define new variables,

mm

e n

X=r,=r,-r, m= ~m,,
m, +m,
m,x, +m,r
R=—¢e  —nn, M=m,+m, ~m,,
M

where



x: relative coordinate m: reduced mass

R: center of mass coordinate M : total mass

We substitute these in the equations of motion, which can then be cast in the form

This is a basic result with no approximations!

set R=r,, x=r,,
In Milonni & Eberly, main body of text they
throw away the eq. for R

We can do better,and - clarify the approximations that we will make

- explore the consequences of the C.O.M. equation

The Electric Dipole Approximation

This is a key element in almost all of Optical Physics and Quantum Optics.

atomic dimensions x| ~1 A << optical wavelengths A ~lum =10*A




This implies that the electric field is nearly constant over the extent of an atom.

In this situation it is a good approximation to do a first order expansion in x:

E(R - ;”4 X,t) ~ER,1)- ”A; (x-V)E(R,?)
E(R + ”A;‘L X,t) ~ER.1)+ ”;4 (x-V)E(R,?)

If we plug these into the equations for R, x we get

M j—R =~e(x-V)E(R,?) Center-Of-Mass
t.2

md—x =eE(R,1)+ M ~ e
dr

e(x-VER,?)+F,,.(x) Rel. Coordinate

Physical Interpretation

p=ex is the electric dipole moment of the atom

The Center-Of-Mass equation can be written on the form

Mj—R ~(-V)ER,)=F =-V,V(x,R,1)
t.2

F: Dipole Force

V(x,R,t)=-p-E(R,1): Interaction Energy

I. e. the Center-Of-Mass motion is governed by the Dipole Force, which is the
gradient of the interaction energy between the dipole and the field.
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The Relative Coordinate equation can be simplified by keeping only the leading
terms in X,

mj—x =eE(R,1)+F,,(x)=-V,V(x,R,t)+ F.,(x)
t2

Pulling it all together, we get our final result

M j—R =-Vi:V(X,R,1) Center-Of-Mass
t.2
d? :
md—x =-V.V(x,R,1)+F,,(x) Rel. Coordinate
t2
V(x,R,t)=-p-E(R,?) Electric Dipole Interaction

Note:

- The Center-Of-Mass equation is the foundation for a lot of important
experimental techniques in the area of laser cooling and trapping.
not explore this further during lectures in this course, but may rev
homework. A more extensive discussion can be found in Steck’s online
notes.

- The equation for the internal degree of freedom allows us to find p as a

function of E, and is thus the foundation for our theory of electromagnetic
wave propagation in polarizable media.
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The Electron Oscillator/Lorentz Atom

Consider a simple model of a classical atom, in which the electron is harmonically
bound to the nucleus

2 2
noW'e Fen:_maFX

\ resonance frequency

origin

Note: ~ We should regard this as a model of the response of an atom, rather than
a classical model of the atom itself.
End or-1y-2p99
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