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OPTI 544,  Problem Set 1  
Posted January 21,  Return January 28 

 
– Always keep a copy of your Solution Set – 

 
I  

(a) Show that a plane wave   is transverse, , if . 
 
(b) Given a damped electron oscillator and a driving field , write down the 

equation of motion for the electron displacement . Look for a solution of the form 
 and derive an expression for . 

 
(c) Describe the nature of the motion of the atomic dipole for  (linear polarization), and 

for   (circular polarization).  
 

II  
A cell of length  contains Cs vapor at a density . We assume that the Cs 
atoms behave like classical electron oscillators with a damping rate , and a 
transition wavelength of  for an atom at rest. 
 
(a) Assuming that atoms in the vapor are at rest, calculate the excess phase delay relative to 

propagation in vacuum, and the transmission for an on-resonance plane wave, 
, passing through the cell. 

 
We now take into account thermal motion in the gas.  This leads to Doppler broadening. (If you 
are not familiar with the concept you can look it up online in, e. g., Wikipedia.) 
 
(b) The temperature of the vapor is , and the mass of the Cs atom is 

 Find the probability distribution  for atoms whose resonance 
frequency  is Doppler shifted to frequency  in the lab frame due to their velocity along 
the plane wave direction of propagation.  Noting that this Doppler broadened frequency 
distribution is much wider than the natural linewidth, find the minimum value of the 
transmission for a plane wave passing through the cell. 

 
III 

 
The density of aluminum metal is . Assuming that each atom contributes its three 
valence electrons to the “electron gas”, at what wavelengths would you expect aluminum metal 
to be reflective. 
 
Some numbers:           
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IV  
Fused silica has a purely real index of refraction  at a frequency 

 (wavelength ). The chromatic dispersion at this frequency is 
. 

 
(a) It is common to ascribe the simultaneous transparency and large index of refraction for 

visible light in fused silica to a strong, far-off resonance optical transition.  Given the value 
of  above, do you expect the resonance frequency  to lie above or below ? 

 
(b) Write down (don't derive) a general expression for , as well as a simplified expression 

valid when this quantity is purely real, , as in our example here. Note: you 
cannot use the near-resonance or weak polarizability approximations in this case.  

 

(c) Based on your result in (b), find a simple expression for the quantity .  

 

(d) Use your results from (b) & (c) to find an expression for the quantity   
  
 that depends only on , .  Then, given that the value of  is known from the values of 

 and  listed above, calculate the resonance wavelength  in nanometer. 
(Your final answer must be a number!) 
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