Quantum States of the Quantized Field

Amplitude and Phase

— Key characteristics of classical fields
— Need equivalents for quantum fields
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Quantum Field
Elap) g[8 8,

L Non-Hermitian!
Separate in amplitude & phase?

Consider operators
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“Phase operators”
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— Analogous to classical phases
— Non-Hermitian, NOT observables

Quadrature operators?
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— Hermitian -> observables
— but ultimately too cumbersome

Let’s rewind and try again...
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“Phase operators”
explilexpl-@)=1  explip)= eXpl-ip)t
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pl-ipdeRpli) = 4 = [ekot-in)

— Analogous to classical phases
— Non-Hermitian, NOT observables

Quadrature operators?
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— Hermitian -> observables
— but ultimately too cumbersome

Let’s rewind and try again...

Quadratures of the Classical Field — Take Two
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complex amplitude for mode &'

Define
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— same info, easier to work with -
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Quadratures of the Classical Field — Take Two Quantum States of the Field in ModerQ

lﬁ*
El2d) = EQ oy (E)e ¢.C. Number States (Foch states)

L
complex ampli4t\ude for mode (z”n a,n
Afa [nD = nind

Define
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Quantization: *->(\, «f-> at
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A A ] A
" [X('HCOS(&%) ~FH)sin(0a) | — HIGHLY non-classical, {E) =0
— VERY hard to make for large n

— same info, easier to work with -
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Quantum States of the Field in Mode/?e

Number States (Foch states)

0o [nD =ninS

-

XD =¢nTny =0
1KY = Ty = L lnelh)

-

AXAY =5 (ne4)

A
— HIGHLY non-classical, {E) =0

— VERY hard to make for large n

Coherent States  (Quasi-classical states)

— Closest approximation to classical field
— See Cohen-Tannoudj, complement Gy

Definition: [2}> is coherent (quasiclassical) iff

> = R @) |2> = K(8), <Y = V)
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that
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equivalently

Definition: [% > is coherent (quasiclassical) iff

@ 80D =< Ay = of[0)

2)  (GTOVR0) = o) xlo)
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Coherent States  (Quasi-classical states)

— Closest approximation to classical field
— See Cohen-Tannoudj, complement G,

Definition: [% ) is coherent (quasiclassical) iff

RS = LHIR @) [2S = K(8), <YE = V)

CHEY = B (1)1 04

. ~N A A .
noting /) e QL) = (0) Pt

that
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equivalently

Definition: [% > is coherent (quasiclassical) iff
M A0 =<y (A = of0)

@) (aTOVAr) = o) x o)

Cohen-Tannoudji, Lecture Notes
e

equivalently

Definition: a state |x is coherent iff

O ALY

Finally, one can show

JX> = e

Physical properties

(X)) = Re [oilo) e i@t ]

(Y)Y = Tm o) e & /\.\
@

AX ) = &AYH) =1
AX DY = '/q
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Cohen-Tannoudji, Lecture Notes
e

equivalently

Definition: a state |x) is coherent iff

O ALY

Finally, one can show
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Physical properties
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(Y= Tm o) e vt

£ TRIED

anY
\ yxw

AX ) = AYVH) =),
AX DY = '/g

Photon statistics

outcomes N

1
Pln)= (X INXAIKS = ‘—”fl——e o

Measure N C {
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mean I =[a&l%

Poisson distribution w/
variance An*= x|t

L

— Shot Noise

oAn =&




Quantum States of the Quantized Field Begin Lecture 04-12-2021

Photon statistics More about Coherent States

outcomes 1 PLOALIRTEA),
Io(l”' -~ 12
O[") QXMXHMQF e i /7.\ Coherent States
@ [>) as translated
Xt
- N

Vacuum States?
mean n=lalt
Poisson distribution w/

Measure N E {

variance An*= x|t Generating Coherent States from the Vacuum

Definition: D(_DO— X~ *

]

AVI = \‘ w — Shot Noise Unitary, equals translation

Glaubers formula (from BCH formula)

A

A A ~ A\ A
A+B _ 4B @-}_[A,B]

c =<

for [A,[A, ?3”= [3.14,8]]=0

End Lecture 04-09-2021
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More about Coherent States

AL T2,

/ ;‘\ Coherent States
. > as translated
\ 0> JXk)

Vacuum States?
Generating Coherent States from the Vacuum

Definition: D(_DO—- o~ *

!

Unitary, equals translation

Glaubers formula (from BCH formula)

Lo
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Apply to Y_DLA"—' f-o<*0':] = X *x
A AT A
A & [AR]
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OK - l'j(o(B generates (x> from the vacuum!
Rewrite:
KO- = (x-o*) X+ 1 (+aF)Y
N SR
where X'—'—(o(l)'\(lo(% VERCALS,

Glaubers formula again:

2y +.2xy _ 9YY 10Xy
B) = ' X XY/qewxer}’

Recall: é(g) = e:ig'p/ﬁ’ ® translationby g

§fp‘) =e""P9f/’& ® translation by ¢

where ﬂ:%X , P:Poy
. & Xp 2%

é—zqo& ’ ‘3”’,3’
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OK — D(«) generates [x> from the vacuum!
Rewrite:
KO- = (B-o%) X+ i (X +0*)Y
= L‘[Y}AC + 12-){’\2’
where X = (XX, VY= o] Yo

Glaubers formula again:

. A . . A A A
A BNYX+12XY — \ an
Dix)=e o o KM IVX 1KY

Recall: é(g) = zﬂ.qp/&’ ® translation by 0

Recall: ,
§f?) = 6-'?9’/;& ® translationby ¢

Where q":. QOX ’ P = Poy
A A a A & XDPG :2&
Q_-‘-QOX, P=RY

This gives us

$(9)=30%)= ™Y, Stp1-dt)- SR

"
D(®) translates
along X then?Y |

Discussion —
How to do this?



This gives us
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$(0)=8(%)= M7 (p)=80) = T2
y-}---o
ﬁ[o() translates L
along X then?Y ¢ r
: X
Discussion —

How to do this?

Coherent States from
Classical Dipole Radiation

Classical Dipole A[t) = d, coswt) @ t=0

Quantized Field F[2)= ) (G+a™)

Dipole-Field Interaction

H = Beoog (8% 1) + B A (£) (8 457)

A =~ d—félg& -\, Cos(igt)

Homework Problem
: (voluntary)

[T i he g1 (W0 Tl Sinllw-sg) /o]
: (_GO"NQJ/p_




Quantum States of the Quantized Field

Coherent States from
Classical Dipole Radiation

Classical Dipole A[t) = d, coswt) @ t=0

Quantized Field F£/[2)= Z& (G+a™)

Dipole-Field Interaction

P:I = %o [3\*& +'/z) + :g‘\)\[ﬂ ( G+at)

M) =~ d_f;)_& = )\, Cos(it)

Homework Problem
: (voluntary)

O(IT) - }2\_, Q"i(“‘W&JTQ S;VI[(W-R&)T/Q?
- (o-tog) /2.

Drive from 0<4+{T ®»
E) = (T)e HalE=T)

Recall from Semi-Classical Laser Theory

</6Al('63> drives é(’é)

7 LN
classical dipole coherent state
+ quantum + quantum

fluctuations fluctuations
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Recall from Semi-Classical Laser Theory

</&lfﬂ> drives é(-ﬂ)

7 LN
classical dipole coherent state
+ quantum + quantum

fluctuations fluctuations

Squeezed States

Minimum uncertainty states w/asymmetry

AXAY =Yy, AXW)#AY()

JabY
N/
an
N

Phase Squeezing

Amplitude Squeezing

Requires interaction with Nonlinear medium



