Amplitude and Phase

- Key characteristics of classical fields
- Need equivalents for quantum fields

Classical Field

$$E(2,t) = \mathcal{E}_{\mathbf{k}} \propto e^{-i(\omega t - k_2)} + c.c.$$

$$|\alpha|e^{i\varphi}$$

Quantum Field

Non-Hermitian

Separate in amplitude & phase?

Consider operators

$$\hat{\alpha} = (\hat{N} + 1)^{1/2} e^{\hat{X}} p(i\varphi)$$

$$\hat{\alpha}^{+} = e^{\hat{X}} p(-i\varphi) (\hat{N} + 1)^{1/2}$$
"phase" "amplitude"

$$\hat{\exp}(i\phi) = (\hat{N}+1)^{-1/2}\hat{a}$$

 $\hat{\exp}(-i\phi) = \hat{a}^{+}(\hat{N}+1)^{-1/2}$

"Phase operators"

exp(iq)exp(-iq) = 1
$$\exp(iq) = \exp(-iq)^+$$

exp(-iq)exp(iq) = 1 $= [\exp(-iq)]^{-1}$

- Analogous to classical phases
- Non-Hermitian, NOT observables

Quadrature operators?

$$cos \varphi = \frac{1}{2} \left[exp(i\varphi) + exp(-i\varphi) \right]$$

$$= \frac{1}{2} \left[(\hat{N}+1)^{-1/2} \hat{\alpha} + \hat{\alpha}^{+} (\hat{N}+1)^{-1/2} \right]$$

$$sin \varphi = \frac{1}{2i} \left[exp(i\varphi) - exp(i\varphi) \right]$$

$$= \frac{1}{2i} \left[(\hat{N}+1)^{-1/2} \hat{\alpha} - \hat{\alpha}^{+} (\hat{N}+1)^{-1/2} \right]$$

- Hermitian -> observables
- but ultimately too cumbersome

Let's rewind and try again...

"Phase operators"

exp(iq)exp(-iq) = 1
$$exp(iq) = exp(-iq)^+$$

 $exp(-iq)exp(iq) = 1$ $= [exp(-iq)]^{-1}$

- Analogous to classical phases
- Non-Hermitian, NOT observables

Quadrature operators?

$$c\hat{o}s\phi = \frac{1}{2} \left[e\hat{x}p(i\phi) + e\hat{x}p(-i\phi) \right]$$

$$= \frac{1}{2} \left[(\hat{N}+1)^{-1/2} \hat{a} + \hat{a}^{+} (\hat{N}+1)^{-1/2} \right]$$

$$s\hat{i}n\phi = \frac{1}{2} \left[e\hat{x}p(i\phi) - e\hat{x}p(i\phi) \right]$$

$$= \frac{1}{2} \left[(\hat{N}+1)^{-1/2} \hat{a} - \hat{a}^{+} (\hat{N}+1)^{-1/2} \right]$$

- Hermitian -> observables
- but ultimately too cumbersome

Let's rewind and try again...

Quadratures of the Classical Field - Take Two

$$E(\frac{1}{2},\frac{1}{2}) = \sum_{k} \alpha_{k}(\frac{1}{2}) e^{i\frac{k}{2}} + C.C.$$

The complex amplitude for mode $e^{i\frac{k}{2}}$

Re

Define

$$X(t) = \text{Re}\left[\alpha_{k}(t)\right] = \frac{1}{2}\left[\alpha_{k}(t) + \alpha_{k}^{*}(t)\right] = Q(t)$$

 $Y(t) = \text{Im}\left[\alpha_{k}(t)\right] = \frac{1}{2i}\left[\alpha_{k}(t) - \alpha_{k}^{*}(t)\right] = P(t)$

$$\hat{X}(t) = \frac{1}{2} \left[\hat{a}_{k}(t) + \hat{a}_{k}^{\dagger}(t) \right] = \hat{Q}(t)$$

$$\hat{Y}(t) = \frac{1}{2} \left[\hat{a}_{k}(t) - \hat{a}_{k}^{\dagger}(t) \right] = \hat{P}(t)$$

$$\hat{E}(t) = \frac{1}{2} \left[\hat{a}_{k}(t) - \hat{a}_{k}^{\dagger}(t) \right] = \hat{P}(t)$$

$$\hat{E}(t) = \frac{1}{2} \left[\hat{x}(t) + \hat{y}(t) \right] e^{ikt} + H.C.$$

$$= \frac{1}{2} \left[\hat{x}(t) \cos(kt) - \hat{y}(t) \sin(kt) \right]$$

same info, easier to work with -

Quadratures of the Classical Field — Take Two

Define

$$X(t) = \text{Re}\left[\alpha_{k}(t)\right] = \frac{1}{2}\left[\alpha_{k}(t) + \alpha_{k}^{*}(t)\right] = Q(t)$$

 $Y(t) = \text{Im}\left[\alpha_{k}(t)\right] = \frac{1}{2i}\left[\alpha_{k}(t) - \alpha_{k}^{*}(t)\right] = P(t)$

$$\hat{X}(t) = \frac{1}{2} \left[\hat{a}_{R}(t) + \hat{a}_{R}^{\dagger}(t) \right] = \hat{Q}(t)
\hat{Y}(t) = \frac{1}{2} \left[\hat{a}_{R}(t) - \hat{a}_{R}^{\dagger}(t) \right] = \hat{P}(t)
\hat{E}(t,t) = \mathcal{E}_{R}(\hat{X}(t) + i\hat{Y}(t)) e^{ikt} + H.C.
= \mathcal{E}_{R}[\hat{X}(t)\cos(kt) - \hat{Y}(t)\sin(kt)]$$

same info, easier to work with –

Quantum States of the Field in Mode &

Number States (Foch states)

$$\langle n | \hat{X} | n \rangle = \langle n | \hat{Y} | n \rangle = 0$$

 $\langle n | \hat{X}^{2} | n \rangle = \langle n | \hat{Y}^{2} | n \rangle = \frac{1}{2} (n + \frac{1}{2})$

$$\Delta X \Delta Y = \frac{1}{2} (n + \frac{1}{2})$$

- HIGHLY non-classical, $\langle \hat{E} \rangle = 0$
- VERY hard to make for large

Quantum States of the Field in Mode &

Number States (Foch states)

$$\langle n | \hat{X} | n \rangle = \langle n | \hat{Y} | n \rangle = 0$$

 $\langle n | \hat{X}^{2} | n \rangle = \langle n | \hat{Y}^{2} | n \rangle = \frac{1}{2} (n + \frac{1}{2})$

$$\Delta X \Delta Y = \frac{1}{2} (N + \frac{1}{2})$$

- HIGHLY non-classical, $\langle \hat{E} \rangle = 0$
- VERY hard to make for large 1/1

Coherent States (Quasi-classical states)

- Closest approximation to classical field
- See Cohen-Tannoudj, complement G_V

Definition: [4> is coherent (quasiclassical) iff

$$\langle \hat{X}(t) \rangle = \langle \hat{Y}(\hat{X}(t)) | \hat{Y} \rangle = X(t), \langle \hat{Y}(t) \rangle = Y(t)$$

$$\langle \hat{H}(t) \rangle = \Re \omega (|\alpha(t)|^2 + 1/2)$$

noting that

$$\hat{X}(t) \propto \hat{a}(t) = \hat{a}(0)e^{-i\omega t}$$

$$\hat{Y}(t) \propto \hat{a}^{\dagger}(t) = \hat{a}^{\dagger}(0)e^{i\omega t}$$

equivalently

Definition: 14> is coherent (quasiclassical) iff

(1)
$$\langle \hat{a}(0) \rangle = \langle \psi | \hat{a}(0) | \psi \rangle = \alpha(0)$$

(2)
$$\langle \hat{a}^{\dagger}(0) \hat{a}(0) \rangle = \alpha(0)^{\sharp} \alpha(0)$$

Coherent States (Quasi-classical states)

- Closest approximation to classical field
- See Cohen-Tannoudj, complement G_V

<u>Definition</u>: 14> is coherent (quasiclassical) iff

$$\langle \hat{X}(t) \rangle = \langle \hat{Y}(\hat{X}(t)| \hat{Y} \rangle = X(t), \langle \hat{Y}(t) \rangle = Y(t)$$

$$\langle \hat{H}(t) \rangle = \Re \omega (|\alpha(t)|^2 + 1/2)$$

noting that

$$\hat{X}(t) \propto \hat{a}(t) = \hat{a}(0)e^{-i\omega t}$$

 $\hat{Y}(t) \propto \hat{a}^{\dagger}(t) = \hat{a}^{\dagger}(0)e^{i\omega t}$

equivalently

Definition: [4> is coherent (quasiclassical) iff

(1)
$$\langle \hat{a}(0) \rangle = \langle \psi | \hat{a}(0) | \psi \rangle = \alpha(0)$$

(2)
$$\langle \hat{a}^{\dagger}(o) \hat{a}(o) \rangle = \alpha(o)^{+} \alpha(o)$$

Cohen-Tannoudji, Lecture Notes

<u>Definition</u>: a state $|\alpha\rangle$ is coherent iff

$$\hat{\alpha}|\alpha\rangle = \alpha|\alpha\rangle$$

Finally, one can show

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Physical properties

$$\langle \hat{X}(t) \rangle = \text{Re} \left[\alpha(0) e^{-i\omega t} \right]$$

 $\langle \hat{Y}(t) \rangle = \text{Im} \left[\alpha(0) e^{-i\omega t} \right]$

$$\Delta X(t) = \Delta Y(t) = \frac{1}{2}$$

$$\Delta X \Delta Y = \frac{1}{4}$$

Cohen-Tannoudji, Lecture Notes

Definition: a state $|\alpha\rangle$ is coherent iff

Finally, one can show

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Physical properties

$$\langle \hat{X}(t) \rangle = \text{Re} \left[\alpha(0) e^{-i\omega t} \right]$$

 $\langle \hat{Y}(t) \rangle = \text{Im} \left[\alpha(0) e^{-i\omega t} \right]$

$$\Delta X(t) = \Delta Y(t) = \frac{1}{2}$$

$$\Delta X \Delta Y = \frac{1}{4}$$

Photon statistics

Measure
$$\hat{N} \Rightarrow \begin{cases} \text{outcomes } N \\ P(n) = \langle \alpha | n \times n | \alpha \rangle = \frac{|\alpha|^{2n}}{n!} e^{-|\alpha|^{2}} \end{cases}$$

Poisson distribution w/ $\begin{cases} mean & \overline{N} = [\alpha]^2 \\ variance & \Delta N^2 = [\alpha]^2 \end{cases}$

$$\Delta n = \sqrt{n}$$
 - Shot Noise