Quantum States of the Quantized Field

Amplitude and Phase

— Key characteristics of classical fields
— Need equivalents for quantum fields
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L Non-Hermitian!
Separate in amplitude & phase?

Consider operators
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— Analogous to classical phases
— Non-Hermitian, NOT observables

Quadrature operators?
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— Hermitian -> observables
— but ultimately too cumbersome

Let’s rewind and try again...
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“Phase operators”
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— Analogous to classical phases
— Non-Hermitian, NOT observables

Quadrature operators?

cosqP = —'[efq:(i +6<'p(-:q>)]

f»\H-t) 26+ 0 [N+1) ”?-]

-—
-

Ml=

Sing = L exptip) —c%p(:cp)]
= L[t A G (Rer) ™)

— Hermitian -> observables
— but ultimately too cumbersome

Let’s rewind and try again...

Quadratures of the Classical Field — Take Two
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— same info, easier to work with -
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Quadratures of the Classical Field — Take Two Quantum States of the Field in ModerQ
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— VERY hard to make for large n

— same info, easier to work with -
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Quantum States of the Field in Mode/?e

Number States (Foch states)
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— HIGHLY non-classical, {E) =0

— VERY hard to make for large n

Coherent States  (Quasi-classical states)

— Closest approximation to classical field
— See Cohen-Tannoudj, complement Gy
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Coherent States  (Quasi-classical states)

— Closest approximation to classical field
— See Cohen-Tannoudj, complement G,
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Cohen-Tannoudji, Lecture Notes
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equivalently

Definition: a state |x is coherent iff
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Finally, one can show
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Physical properties
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Cohen-Tannoudji, Lecture Notes
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Definition: a state |x) is coherent iff

O ALY

Finally, one can show

-mr’-/.z oM
JX> = §_ o In>

Physical properties

(X)) = Re | c(o) e“‘“b
(Y= Tm o) e vt

£ TRIED

anY
\ yxw

AX ) = AYVH) =),
AX DY = '/g

Photon statistics

outcomes N

1
Pln)= (X INXAIKS = ‘—”fl——e o

Measure N C {

~_

mean I =[a&l%

Poisson distribution w/
variance An*= x|t

L

— Shot Noise
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