OPTI 544: Homework Set #7 Posted March 31, Return April 9.

- Keep a copy of your Solution Set -

Ι

The Lagrangian for a chain of masses m separated by distances a and connected by springs with spring constants κ can be expressed in terms of the particle positions and velocities as

$$\mathcal{L} = \frac{1}{2} \sum_{i} m \dot{x}_i^2 - \kappa (x_{i+1} - x_i)^2$$

Starting from this Lagrangian, follow the steps in the notes "Introduction to Field Theory" and derive a wave equation for the displacement field $\eta(x)$ in the continuous limit, $a \rightarrow 0$.

II

Consider the x-polarized electromagnetic field in a cylindrical cavity of length L and cross sectional area A. Using the standard normal mode expansion of $E_x(z,t)$ and $B_y(z,t)$ from class, write down expressions for the Hamiltonian and the Lagrangian in terms of the generalized coordinates $q_i(t)$ and their time derivatives.

- (a) Use the Lagrange equations of motion to derive a second order differential equation for the $q_j(t)$'s.
- (b) Substitute the normal mode expansion of $E_x(z,t)$ in the wave equation and derive a second order differential equation for the $q_j(t)$'s. Compare to the result in (a) above.

Ш

Consider a *single* standing-wave normal mode of the electromagnetic field in a 1D cavity of length L and cross-sectional area A.

- (a) Find the commutator of $\hat{E}_x(z)$ and $\hat{B}_y(z')$ for this mode, and show that in general one cannot simultaneously measure these electric and magnetic fields with arbitrary precision.
- (b) Find the minimum uncertainty product $\Delta E_x(z)\Delta B_y(z')$ for this mode.

IV

Consider in the following a 4-port beamsplitter with $t = 1/\sqrt{2}$ and $r = i/\sqrt{2}$.

- (a) Let the input state be $|\Psi_{in}\rangle = (\sqrt{1-\varepsilon}|1\rangle_1 + \sqrt{\varepsilon}|2\rangle_1)(\sqrt{1-\varepsilon}|1\rangle_2 + \sqrt{\varepsilon}|2\rangle_2)$.
 - i. e. the wavepackets entering each port are mostly one-photon states but contain a small admixture of two-photon states. Find the output state $|\Psi_{out}\rangle$.

We use photomultiplier type detectors to measure the outputs from the beamsplitter. These detectors will click once when struck by a pulse of one or more photons.

(b) Find the probability of a coincidence detection as function of the two-photon contamination ε .