Begin 03-17-2021

Lasing action: requires a gain medium & feedback

- (*) As usual we simplify to focus on the key concepts | 1D cavity
- (*) For spherical mirror resonators, see M&E Ch. 14

Optical Resonator/Cavity

Eigenmodes of the Electromagnetic Field

Plane Parallel Mirrors \Rightarrow standing waves Length L \Rightarrow wave number for m'th mode

$$k = \frac{m\pi}{l}$$
, M integer

Field in the Mth mode

Note: Gain odispersion in cavity

$$\omega \neq \ell_{\mathbf{m}} C = \omega_{\mathbf{m}}$$

$$\uparrow$$
Laser freq. Vacuum mode freq.

Polarization density, M4h mode

$$\vec{P}_{m}(z,t) = \vec{\epsilon}_{m} 2N M^{*} g_{1}^{(m)}(z,t) \sin(k_{m}z) e^{-i\omega t}$$

$$\vec{P}(z,t) = \sum_{m} \vec{P}_{m}(z,t) \qquad \text{Total polarization density in all modes}$$

Note: Saturation effects Node cross-talk

Wave eq. in a Resonator

- mimic loss by including current 5= ₹ €

4th Maxwell Eq.:
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \nabla \vec{E}$$

Wave Eq. in resonator, with distributed loss

$$\left(\frac{\partial^{2}}{\partial z^{2}} - \frac{\kappa}{c^{2}} \frac{\partial}{\partial t} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{E} = \frac{1}{\varepsilon_{0}} c^{2} \frac{\partial^{2}}{\partial t^{2}} \vec{P}$$

$$\kappa = \sqrt{\varepsilon_{0}} \leftarrow \frac{\text{Phenomenological loss constant}}{\text{(losses + output coupling)}}$$
units 1/s

Wave Eq. for M4h mode in the resonator

$$=\frac{\tilde{\varepsilon}_{m}}{\varepsilon_{o}c^{2}}2N\mu^{*}\sin(k_{m}z)\frac{\partial^{2}}{\partial t^{2}}\tilde{\varepsilon}_{m}\varepsilon_{m}(t)\sin(k_{m}z)e^{-i\omega t}$$

Apply SVEA & resonant approx., $\omega - \omega_m \ll \omega$ (HW)

Quasi-steady state solution:

Fast atomic response High-Q cavity
$$(\beta \gg \kappa)$$

$$\varphi_{1}^{(m)}(+) \text{ in S. S.}$$

$$\text{given } \mathcal{E}(+)$$

We can adiabatically eliminate $\mathcal{G}_{1}^{(m)}(\mathcal{A})$

by replacing w/ S.S value given $\mathcal{E}(\mathcal{L})$, \mathcal{L}_{11} & \mathcal{L}_{21}

Note: We will allow for some external process that potentially creates a population inversion

Substitute in Equation for $\mathcal{E}_{m}(+)$

$$=\frac{N|u|^2\omega}{2E_0\hbar}\frac{\beta^{-1}\Delta}{\beta^2+\Delta^2}(g_{22}-g_{11})\mathcal{E}_m(t)$$

Let $N_1 = Ng_{11}$, $N_2 = Ng_{12}$ and define

$$Q = \frac{|M|^2 \omega}{\varepsilon_0 \pi c} \frac{\beta}{\Delta^2 + \beta^2} (N_2 - N_4) = \sigma(\Delta) (N_2 - N_4)$$
gain
$$\delta = \frac{\Delta}{\beta} Q = \frac{\Delta}{\beta} \sigma(\Delta) (N_2 - N_4)$$
 dispersion

Fundamental Eq. of Semiclassical Laser Theory

$$\frac{\partial}{\partial t} \mathcal{E}_{m}(t) = \frac{1}{2} \left[-\kappa + 2i(\omega - \omega_{m}) + C(g - id) \right] \mathcal{E}_{m}(t)$$

The FESLT gives us insight into

- (*) Threshold behavior
- (*) Laser intensity and power output
- (*) Laser frequency and linewidth

Equation for Laser intensity $T \propto \mathcal{E}^* \mathcal{E} \implies$

$$\frac{dI}{dt} \propto \frac{\partial \mathcal{E}_{m}^{*}(t)}{dt} \mathcal{E}_{m}(t) + C.C.$$

$$= \frac{1}{2} \left[-x - 2i \left(\omega - \omega_{m} \right) + C \left(g - i \delta \right) \right] \left[\mathcal{E}_{m}(t) \right]^{2} + C.C.$$

$$\frac{dT}{dt} = (cg - \kappa)T \Rightarrow \begin{cases} 9 > g_t : \text{ exponential growth} \\ 9 < g_t : \text{ exponential decay} \end{cases}$$

We define
$$g_{\xi} = \sigma(\Delta) \Delta N_{\xi}$$
, $\Delta N_{\xi} = \frac{\kappa}{c \sigma(\Delta)}$

The FESLT gives us insight into

- (*) Threshold behavior
- (*) Laser intensity and power output
- (*) Laser frequency and linewidth

Equation for Laser intensity $T \propto \mathcal{E}^* \mathcal{E} \implies$

$$\frac{dI}{dt} \propto \frac{\partial \mathcal{E}_m(t)}{dt} \mathcal{E}_m(t) + C.C.$$

$$= \frac{1}{2} \left[-x - 2i \left(\omega - \omega_m \right) + C \left(g - i \delta \right) \right] \left[\mathcal{E}_m(t) \right]^2 + C.C.$$

$$\frac{dT}{dt} = (cg - \kappa)T \Rightarrow \begin{cases} g > g_t : \text{ exponential growth} \\ g < g_t : \text{ exponential decay} \end{cases}$$

We define
$$g_{\xi} = \sigma(\Delta) \Delta N_{\xi}$$
, $\Delta N_{\xi} = \frac{\kappa}{c \sigma(\Delta)}$

These are Key parameters that characterizes a laser

$$g_L = \frac{\kappa}{c}$$
 Threshold Gain

$$\Delta N_{t} = \frac{\kappa}{c \sqrt{\Delta}}$$
 Threshold Inversion

Example: Diode lasers & threshold behavior

Fundamental Eq. of Semiclassical Laser Theory

$$\frac{\partial \mathcal{E}_{m}(\ell)}{\partial t} = \frac{1}{2} \left[-\kappa + 2i \left(\omega - \omega_{m} \right) + C \left(g - i \partial \right) \right] \mathcal{E}_{m}(\ell)$$

$$Q = \sigma(\Delta) \left(N_{2} - N_{1} \right) \qquad \delta = \frac{\Delta}{\beta} Q = \frac{\Delta}{\beta} \sigma(\Delta) \left(N_{2} - N_{1} \right)$$

$$\Delta = \frac{\Delta}{\beta} Q = \frac{\Delta}{\beta} \sigma(\Delta) \left(N_{2} - N_{1} \right)$$

$$\Delta = \frac{\Delta}{\beta} Q = \frac{\Delta}{\beta} \sigma(\Delta) \left(N_{2} - N_{1} \right)$$

$$\Delta = \frac{\Delta}{\beta} Q = \frac{\Delta}{\beta} \sigma(\Delta) \left(N_{2} - N_{1} \right)$$

$$\Delta = \frac{\Delta}{\beta} Q = \frac{\Delta}{\beta} \sigma(\Delta) \left(N_{2} - N_{1} \right)$$

$$\Delta = \frac{\Delta}{\beta} Q = \frac{\Delta}{\beta} \sigma(\Delta) \left(N_{2} - N_{1} \right)$$

Laser Frequency in Steady State

Let $\frac{\partial}{\partial t} \mathcal{E}_{lm} = 0$ and consider imaginary part of FESLT

$$\omega_{m} - \omega = -\frac{gc}{2\beta}\Delta = \frac{gc}{2\beta}(\omega - \omega_{M})$$

Solve for ω :

$$\omega = \frac{\omega_{m} + 9c/2\beta}{1 + 9c/2\beta} \approx \omega_{m} + \frac{c\theta}{2\beta} (\omega_{2} - \omega_{m})$$
laser frequency for $\frac{gc}{2\beta} \ll 1$ frequency pulling

Physical interpretation – note $\delta(\omega) > 0$ for $\omega < \omega_{2}$

From MBE's
$$n_R = 1 - \frac{\delta \omega}{2R}$$
 \Rightarrow $n_R < 1$

- \Rightarrow Optical \angle < physical \angle \Rightarrow ω increases
- Laser frequency is pulled towards resonance

Solve for ω :

$$\omega = \frac{\omega_{m} + \frac{9^{c}/2\beta}{1 + 9^{c}/2\beta}}{1 + 9^{c}/2\beta} \approx \omega_{m} + \frac{c}{2\beta} (\omega_{n} - \omega_{m})$$
laser frequency for $\frac{9^{c}}{2\beta} \ll 1$ frequency pulling

Physical interpretation – note $\delta(\omega) > 0$ for $\omega < \omega_{\bullet}$,

From MBE's
$$n_R = 1 - \frac{\delta \omega}{16}$$
 \Rightarrow $n_R < 1$

- Optical ∠ < physical ∠ ⇒ ω increases</p>
- Laser frequency is pulled towards resonance

Gain requires Population Inversion

Laser Pumping Schemes

3-Level System

Ruby Laser

Hard to Pump!

4-Level System

Nd-YAG **Ti-Sappire Er-Fiber (glass) Organic Dye** Helium-Neon Semiconductor

Easy to Pump!

Gain requires Population Inversion

Laser Pumping Schemes

3-Level System

Ruby Laser

Hard to Pump!

4-Level System

Nd-YAG **Ti-Sappire Er-Fiber (glass) Organic Dye** Helium-Neon Semiconductor

Easy to Pump!

Population Rate Equations – 3 level System

Let $\lceil \frac{1}{22} \gg P$, $\lceil \frac{1}{21} \rceil$, $\lceil \frac{1}{2} \rceil > 0$

$$\dot{N}_{1} = -PN_{1} + \Gamma_{1}N_{2} + \sigma(\nu)\phi(N_{2} - N_{1})$$

$$\dot{N}_{2} = PN_{1} - \Gamma_{1}N_{2} - \sigma(\nu)\phi(N_{2} - N_{1})$$

End 03-19-2021

Begin 03-22-2021

Steady State Solution (Home Work Set 6)

$$N_2 - N_1 = \frac{(P - \Gamma_{21})(N_2 + N_1)}{P + \Gamma_{21} + 2\sigma(Y)\phi}$$

Use
$$\begin{cases} N_1 + N_2 = N \\ g(y) = g(y)(N_2 - N_1) \end{cases}$$

$$Q(n) = Q(n) \frac{b + L^{1} + 7Q(n)\phi}{(b - L^{1})N} > 0 \quad \text{iff} \quad b > L^{1}$$

Population Rate Equations – 3 level System

$$\dot{N}_{1} = -PN_{1} + L^{1}N^{5} + Q(N) \phi(N^{5} - N^{1})$$

$$\dot{N}_{2} = DN_{1} - L^{1}N^{5} + Q(N) \phi(N^{5} - N^{1})$$

Steady State Solution (Home Work Set 6)

$$N_2 - N_1 = \frac{(P - \Gamma_{21})(N_2 + N_1)}{P + \Gamma_{21} + 2\sigma(\gamma)\phi}$$

Use
$$\begin{cases} N_1 + N_2 = N \\ g(y) = g(y)(N_2 - N_1) \end{cases}$$

Divide top & bottom w/ $P + \sqrt{1}$

$$g(v) = \frac{q_0(v)}{1 + \phi/\phi_{Sat}}$$

$$g(v) = \frac{q_0(v)}{1 + \phi/\phi_{SQL}}$$
Saturated Gain
$$q_0(v) = \sigma(v) \frac{(P - f_2)N}{P + f_2}$$
Small Signal Gain

$$\phi_{\text{sat}} = \frac{\rho_{+} \Gamma_{21}}{2\sigma(\gamma)}$$

$$\phi_{\text{sat}} = \frac{\rho_{+} \Gamma_{2_{1}}}{2\sigma(\nu)} \qquad \qquad \Gamma_{\text{sat}} = h \nu \phi_{\text{sat}}$$

Saturation Flux

Saturation Intensity

Gain requires Population Inversion

Laser Pumping Schemes

3-Level System

Ruby Laser

Hard to Pump!

4-Level System

Nd-YAG **Ti-Sappire Er-Fiber (glass) Organic Dye** Helium-Neon

Easy to Pump!

Semiconductor

Population Rate Equations – 4 level System

Let $\lceil \frac{1}{32} \gg P$, $\lceil \frac{1}{31} \rceil$, $\lceil \frac{1}{32} \rceil \Rightarrow \sqrt{1} > 0$

$$\dot{N}_{0} = -PN_{0} + \Gamma_{10}N_{1}$$

$$\dot{N}_{1} = -\Gamma_{10}N_{1} + \Gamma_{21}N_{2} + \sigma(v)\phi(N_{2} - N_{1})$$

$$\dot{N}_{2} = PN_{0} - \Gamma_{21}N_{2} - \sigma(v)\phi(N_{2} - N_{1})$$

Steady State Solution (Home Work Set 6)

$$N_{2} - N_{1} = \frac{P(\Gamma_{10} + \Gamma_{21}) + \Gamma_{10} \Gamma_{21} + (2P + \Gamma_{10}) \nabla \Phi}{P(\Gamma_{10} + \Gamma_{21}) + \Gamma_{10} \Gamma_{21} + (2P + \Gamma_{10}) \nabla \Phi}$$

Population Rate Equations – 4 level System

Let $\Gamma_{32} \gg P$, Γ_{21} , $\Gamma_{32} \sim 0$

$$\dot{N}_{0} = -PN_{0} + \Gamma_{10}N_{1}$$

$$\dot{N}_{1} = -\Gamma_{10}N_{1} + \Gamma_{21}N_{2} + \sigma(v)\phi(N_{2} - N_{1})$$

$$\dot{N}_{2} = PN_{0} - \Gamma_{21}N_{2} - \sigma(v)\phi(N_{2} - N_{1})$$

Steady State Solution (Home Work Set 6)

$$N_2 - N_1 = \frac{P(\Gamma_0 + \Gamma_1) + \Gamma_0 \Gamma_1 + (2P + \Gamma_0) \nabla \Phi}{P(\Gamma_0 + \Gamma_1) + \Gamma_0 \Gamma_1 + (2P + \Gamma_0) \nabla \Phi}$$

Divide top & bottom w/ $P(\Gamma_0 + \Gamma_1) + \Gamma_0 \Gamma_1$

$$g(v) = \frac{g_0(v)}{1 + \phi/\phi_{sat}}$$

Saturated Gain

$$\delta^{a}(\lambda) = \frac{b(l^{10} + l^{2}) + l^{10}l^{3}}{2(\lambda)b(l^{10} - l^{31})N}$$

Small Signal Gain

Saturation Flux

Saturation Intensity

Divide top & bottom w/ $P(\Gamma_{10} + \Gamma_{12}) + \Gamma_{10} \Gamma_{11}$

$$g(v) = \frac{g_0(v)}{1 + \phi/\phi_{\text{sat}}}$$

Saturated Gain

$$\delta^{a}(\lambda) = \frac{b(l^{10} + l^{2}) + l^{10}l^{3}}{2(\lambda)b(l^{10} - l^{3})N}$$

Small Signal Gain

$$\phi_{\text{Sat}} = \frac{P(\Gamma_{10} + \Gamma_{21}) + \Gamma_{10} \Gamma_{21}}{2(P + \Gamma_{10}) \sigma(\nu)}, \quad I_{\text{Sat}} = h \nu \phi_{\text{sat}}$$

Saturation Flux

Saturation Intensity **Threshold Inversion and Pumping Rates**

Example: 3-level system:
$$\Delta N = \frac{(P - \Gamma_2)N}{P + \Gamma_2 + 2\sigma \phi}$$

By definition $g_{\xi} = G(v) \triangle N_{\xi}$ Threshold Gain Threshold Inversion defines P_{ξ}

$$\Delta N_{\pm} = \frac{(P_{\pm} - \Gamma_{21})N}{P_{\pm} + \Gamma_{21} + 2\sigma\phi} = \frac{(P_{\pm} - \Gamma_{21})N}{P_{\pm} + \Gamma_{21}}$$

$$= 0 \text{ below threshold}$$

Solve for the Threshold Pumping Rate.

Threshold Inversion and Pumping Rates

Example: 3-level system:
$$\Delta N = \frac{(P - \Gamma_2)N}{P + \Gamma_2 + 2\sqrt{\Phi}}$$

By definition
$$g_{\xi} = G(v) \triangle N_{\xi}$$
 defines P_{ξ} .

Threshold Gain Threshold Inversion

$$\Delta N_{\pm} = \frac{(P_{\pm} - \Gamma_{1})N}{P_{\pm} + \Gamma_{1} + 2\sigma \phi} = \frac{(P_{\pm} - \Gamma_{2})N}{P_{\pm} + \Gamma_{1}}$$

Solve for the Threshold Pumping Rate.

$$P_{\pm}^{3-\text{level}} = \frac{N + \Delta N_{\pm}}{N - \Delta N_{\pm}}$$

$$P_{\pm}^{4-\text{level}} = \frac{\Delta N_{\pm}}{N - \Delta N_{\pm}} \quad \text{for } \Gamma_{10} \gg \Gamma_{21}$$

Gain under Lasing Conditions

Below threshold
$$q \leq g_{\downarrow} \Rightarrow \begin{cases} \phi \leq \phi_{sat} \\ g(v) \sim g_{o}(v) \end{cases}$$
Small Signal Gain

Above threshold: exp. growth of ϕ until the gain saturates, growth slows and stops

Steady State:

$$g(v) = g_{t} = \kappa c$$

Saturated Gain = Loss

Important Question:

- What if many modes see significant gain?
- It depends, and can be complicated!

Gain under Lasing Conditions

Below threshold
$$g \in g_{+} \Rightarrow \begin{cases} \phi \leqslant \phi_{\text{Sat}} \\ g(v) \sim g_{0}(v) \end{cases}$$
Small Signal Gain

Steady State:

Saturated Gain = Loss

Important Question:

- What if many modes see significant gain?
- It depends, and can be complicated!

Homogeneous Gain Broadening

All atoms identical, couple identically to modes (lifetime, collision broadening)

Consider a gradual increase in the pumping rate

1st mode to reach threshold will lase, saturate gain, and clamp the inversion at its threshold value

Homogeneous Gain Broadening

All atoms identical, couple identically to modes (lifetime, collision broadening)

Consider a gradual increase in the pumping rate

P~0 \$ P~P \$ P>> P+

1st mode to reach threshold will lase, saturate gain, and clamp the inversion at its threshold value

Mode Competition

Inhomogeneous Gain Broadening

Atoms are different, couple differently to modes dopants in disordered host material, Doppler broadening in gas lasers

We write the small signal gain in the medium as

normalized Line Shape $\mathcal{O}_0(\mathcal{V}) = \mathcal{O}(\mathcal{V}) \mathcal{O}_0$ inversion available at freq. \mathcal{V}

To observe saturation, we measure gain for a weak probe in the presence of a strong pump beam

The pump saturates the gain for atoms with transition freq. near \searrow_m only

Generally multi-mode Laser operation

Inhomogeneous Gain Broadening

We write the small signal gain in the medium as

normalized Line Shape
$$\emptyset_0(\mathcal{V}) = \mathcal{J}(\mathcal{V}) \underbrace{\Delta N_0}_{\text{inversion available at freq. } \mathcal{V}$$

To observe saturation, we measure gain for a weak probe in the presence of a strong pump beam

The pump saturates the gain for atoms with transition freq. near → only □

Generally multi-mode Laser operation

Spectral hole burning in gas lasers

Geometry:

Doppler broadened gain medium

Due to Doppler shifts, each laser mode feeds on two velocity classes that are resonant for light traveling in opposite directions.

$$\begin{array}{c} \mathcal{V} + \mathcal{V} \mathcal{O} / \mathcal{C} = \mathcal{V}_{21} \\ \mathcal{V} - \mathcal{V} \mathcal{O} / \mathcal{C} = \mathcal{V}_{21} \end{array} \right\} \quad \Rightarrow \quad \mathcal{O}_{\pm} = \pm \left(\mathcal{V}_{21} - \mathcal{V} \right) \mathcal{C}_{\mathcal{V}}^{\prime}$$

Resulting gain as function of velocity or frequency:

Spectral hole burning in gas lasers

Geometry:

Doppler broadened gain medium

Due to Doppler shifts, each laser mode feeds on two velocity classes that are resonant for light traveling in opposite directions.

$$\begin{array}{c} \mathcal{V} + \mathcal{V} \omega / C = \mathcal{V}_{2i} \\ \mathcal{V} - \mathcal{V} \omega / C = \mathcal{V}_{3i} \end{array} \right\} \quad \Rightarrow \quad \mathcal{N}_{\pm} = \pm \left(\mathcal{V}_{3i} - \mathcal{V} \right) \mathcal{C}_{\mathcal{V}}$$

$$N_{\pm} = \pm \left(V_{31} - Y \right)^{C} / V$$

Resulting gain as function of velocity or frequency:

Lamb dip in gas lasers

- (*) Tune the resonator frequency $\sqrt{}$ towards the transition frequency 🍾 of atoms at rest 🌲
- (*) The lasing mode feeds on increasingly large population classes output power grows
- (*) When the spectral holes start overlapping the available population inversion decreases again 🔷 drop in output power centered on 🤾
- (*) This feature is known as the Lamb Dip

- (*) can be used for laser frequency stabilization
- (*) saturated absorption in vapor cells works better, vields better frequency stability

Lamb dip in gas lasers

- (*) Tune the resonator frequency √ towards the transition frequency √ of atoms at rest ⇒
- (★) The lasing mode feeds on increasingly large population classes ⇒ output power grows
- (★) When the spectral holes start overlapping the available population inversion decreases again

 drop in output power centered on ?
- (*) This feature is known as the Lamb Dip

- (*) can be used for laser frequency stabilization
- (*) saturated absorption in vapor cells works better, yields better frequency stability

Shawlow-Townes Formula for Laser Linewidth

Fundamental Question: What is the limit on the Laser linewidth (stability of the E-field phase)

Semiclassical Laser Theory | FESLT

(i)
$$\frac{d\mathcal{E}}{dt} = \frac{1}{2} \left[-x + 2i \left(\omega - \omega_{m} \right) + C(q - i\partial) \right] \mathcal{E}$$

(ii)
$$\frac{\partial |\mathcal{E}|^2}{\partial t} = (cg - \kappa)|\mathcal{E}|^2$$

Eq. (ii) predicts a Steady State field amplitude

$$\frac{cg_0}{1+|\xi_{ss}|^2/|\xi|_{sct}^2} = K \Rightarrow$$

$$|\xi|_{ss}^2 = \frac{cg_0 - K}{K} |\xi|_{sct}^2 \sim \frac{cg_0}{K} |\xi|_{sat}^2$$

Far above threshold

Saturated Gain:
$$g = \frac{g_b}{1 + |\mathcal{E}|^2 / |\mathcal{E}|_{\infty}^2}$$

Lamb dip in gas lasers

- (*) Tune the resonator frequency √ towards the transition frequency √ of atoms at rest ⇒
- (★) When the spectral holes start overlapping the available population inversion decreases again

 drop in output power centered on ?
- (*) This feature is known as the Lamb Dip

- (*) can be used for laser frequency stabilization
- (*) saturated absorption in vapor cells works better, yields better frequency stability

Shawlow-Townes Formula for Laser Linewidth

Fundamental Question: What is the limit on the Laser linewidth (stability of the E-field phase)

Semiclassical Laser Theory | FESLT

(i)
$$\frac{d\mathcal{E}}{dt} = \frac{1}{2} \left[-x + 2i \left(\omega - \omega_{m} \right) + C(q - i\partial) \right] \mathcal{E}$$

(ii)
$$\frac{\partial |g|^2}{\partial t} = (cg - \kappa)|g|^2$$

Eq. (ii) predicts a Steady State field amplitude

$$\frac{cg_0}{1 + |\mathcal{E}_{ss}|^2 / |\mathcal{E}|_{get}^2} = K$$

$$|\mathcal{E}|_{SS}^2 = \frac{cg_0 - K}{K} |\mathcal{E}|_{Set}^2 \sim \frac{cg_0}{K} |\mathcal{E}|_{Sat}^2$$
Far above threshold

- (*) A well designed Laser will relax back to $|\mathcal{E}|_{ss}^{1}$ after a perturbation
- (*) The field *Phase* is not determined by the FESLT

Shawlow-Townes Formula for Laser Linewidth

Fundamental Question: What is the limit on the Laser linewidth (stability of the E-field phase)

Semiclassical Laser Theory | FESLT

(i)
$$\frac{d\mathcal{E}}{dt} = \frac{1}{2} \left[-x + 2i(\omega - \omega_m) + C(q - i\partial) \right] \mathcal{E}$$

(ii)
$$\frac{\partial |g|^2}{\partial t} = (cg - \kappa)|g|^2$$

Eq. (ii) predicts a Steady State field amplitude

$$\frac{cg_o}{1+|\mathcal{E}|_{SS}^2/|\mathcal{E}|_{get}^2} = K \Rightarrow$$

$$|\mathcal{E}|_{SS}^2 = \frac{cg_o - K}{K} |\mathcal{E}|_{Set}^2 \sim \frac{cg_o}{K} |\mathcal{E}|_{Sat}^2$$

Far above threshold

- (*) A well designed Laser will relax back to $|\mathcal{E}|_{ss}^{1}$ after a perturbation
- (*) The field *Phase* is not determined by the FESLT

Beyond Semiclassical Laser Theory

- (*) Eqs. (i) & (ii) accounts for absorption and stimulated emission
- (*) Spontaneous emission into the laser cavity is uncorrelated with the existing laser field ξ

Phasor representation of spontaneous emission

Amplitude relaxes back to |E|^L_{SS}

Phase change remains

Phase diffusion

Beyond Semiclassical Laser Theory

- (*) Eqs. (i) & (ii) accounts for absorption and stimulated emission
- (*) Spontaneous emission into the laser cavity is uncorrelated with the existing laser field \mathcal{E}

Phasor representation of spontaneous emission

Amplitude relaxes back to $|\mathcal{E}|_{SS}^{L}$

Phase change remains

Phase diffusion

We write the field as

Key idea behind analysis:

The phase does a *Random Walk* $\begin{cases} step size \Delta \varphi \\ step rate \end{cases}$

Note: Intuitively $\Delta \varphi \propto \frac{1}{|\mathcal{E}_{ss}|^2}$ and $\gamma \propto N_2$

Statistical analysis of Random Walks:

(average distance walked in time τ) ²

~
$$\Delta \phi(\tau)^2 = \eta \tau \Delta \phi^2 = \frac{D}{2} \tau$$

Shawlow-Townes Formula

where the phase diffusion rate

$$D = \frac{\kappa^2 \hbar \omega_0 N_2}{\Delta N_4 P_{out}}$$

Quantum Electrodynamics - QED

Introduction to Field Theory

(*) Question: How to develop a quantum theory for electromagnetic fields

(*) Answer: Develop a quantum theory for sound and use it as a source of inspiration.

(*) Note: We will make heavy use of classical Lagrange and Hamiltonian formalism. Check out Cohen-Tannoudji Vol. 2, Appendix III, Sections 1-3.