Maxwell-Bloch Equations Begin lecture 03-15-2021

This gives us our final equation for the envelope: Steady-State Solutions to MBE’s

( > . ) 3 Steady state means that
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Maxwell-Bloch Equations
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Note: The Maxwell-Bloch Equations are a key result.
They lead to rich physics, including absorption, y= &A)LM"‘ A _ N A e (a)
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gain, dispersion, self-induced transparency, solitons, t3
lasers, and much more.
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Maxwell-Bloch Equations

Steady-State Solutions to MBE’s

Steady state means that
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We can rewrite this as
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To compare with our classical theory of dispersion,
we solve for f[%) and plug into eq. for a plane wave.
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Real & Imaginary Index of Refraction
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Analogous to results from Electron Oscillator
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Maxwell-Bloch Equations

To compare with our classical theory of dispersion,

we solve for £(2) and plug into eq. for a plane wave.
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Field:  E(2)= S0y e'bt. goe-wrk% RS
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Real & Imaginary Index of Refraction
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Analogous to results from Electron Oscillator
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Behavior of the Intensity
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Exp. Decay of 1T for ©,-¢ <0

Exp. growthof 1 for ¢,-~g >0
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must be maintained by
some external process




Maxwell-Bloch Equations

Behavior of the Intensity
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w<1 absorption

Behavior of the Dispersion:

Real & Imaginary Index of Refraction

NW>1 gain

Exp. Decay of 1 for ©,-¢ <0

Exp. growthof 1 for ¢,-g >0

-

(W)

t

must be maintained by
some external process




Maxwell-Bloch Equations

Behavior of the Dispersion: Self-Induced Transparency & Solitons
(%) Example of a non-trivial application of the MBE’s
Real & Imaginary Index of Refraction in the context of pulse propagation (highly
dynamic, non-steady state behavior.
Aoy (*) The pulse area theorem suggests a light pulse
N = - Aw . _ D o (A) with the proper envelope will act as a 2x pulse.
2l Lbe Thus, if the pulse is shorter than the excited
N state lifetime it may propagate without loss.
R = 1- 5_";" = e Y T"’&i S(a) Correct shaping may also allow propagation
¢ without changes in pulse shape.
(*) See Lecture Notes, Slusher & Gibbs 1972.
wW<1 absorption W>1 gain
i 1
0:Ju —>w o:.\1 —>w
End lecture 03-08-2021




Maxwell-Bloch Equations

Self-Induced Transparency & Solitons

(*) Example of a non-trivial application of the MBE’s
in the context of pulse propagation (highly
dynamic, non-steady state behavior.

(%) The pulse area theorem suggests a light pulse
with the proper envelope will act as a 27 pulse.
Thus, if the pulse is shorter than the excited
state lifetime it may propagate without loss.
Correct shaping may also allow propagation
without changes in pulse shape.

(%) See Lecture Notes, Slusher & Gibbs 1972.







Semi-Classical Laser Theory

Lasing action: requires a gain medium & feedback

“ L S
—2
gain medium mirrors

(%) As usual we simplify to focus on the key
concepts B 1D cavity

(*) For spherical mirror resonators, see M&E Ch. 14

Optical Resonator/Cavity &)

Eigenmodes of the Electromagnetic Field

Plane Parallel Mirrors E) standing waves

Length L B wave number for m’th mode

k. M , M integer
L

Field in the M-h mode

-
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Slowly Varying Envelope

Note: Gain &) dispersion in cavity
w* &, C = K,
A A

Laser freq. Vacuum mode freq.

Polarization density, mth mode

B (24 =8, INWF g™ (2t)sin (&, 2 )W

o _ e Total polarization
Plat)= % P‘MH:,-&\ € density in all modes

Note: Saturation effects » Mode cross-talk



Semi-Classical Laser Theory

Field in the M-h mode

B, (24)= 8,8, (£)5n(k,2)e

t

Slowly Varying Envelope

Note: Gain &) dispersion in cavity
w* &, C = 0,

4 4

Laser freq. Vacuum mode freq.

Polarization density, m“.h mode
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) _ e Total polarization
Plat)= % Pm[%,-t\ € density in all modes

Note: Saturation effects [> Mode cross-talk

Wave eq. in a Resonator
-
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— mimic loss by including current J=o E
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G finite conductivity
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Wave Eq. in resonator, with distributed loss
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Wave Eq. for m'th mode in the resonator
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Semi-Classical Laser Theory

Wave eq. in a Resonator Apply SVEA & resonant approx., LW~Wm<w (HW)
5 .
— mimic loss by including current J=o E
A —~-.
G finite conductivity
4th Maxwell Eq.: VxH = ?P +GE [ - w"') + ]8_ )= M/A Q‘ll (£)
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Wave Eq. in resonator, with distributed loss

Quasi-steady state solution:

Fast atomic response

High-Q cavit Q,_ () inS.S.
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Phenomenological loss constant
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(losses + output coupling) We can adiabatically eliminate 91, )

T by replacing w/ S.S value given EW), 0,48 i
units 1/s
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Wave Eq. for m'th mode in the resonator
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- #q o4 (w) ~ Wt ) e :
T e 9‘”/“ sin(k,,2) Sev ( 91? (£)e ) that potentially creates a population inversion
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Semi-Classical Laser Theory

Apply SVEA & resonant approx., W-Wm& & (HW) Substitute in Equation for Z,, (+)
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Semi-Classical Laser Theory

Substitute in Equation for £, ()

T
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Let N;=Neg, , Ny = N@,, and define
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Fundamental Eq. of Semiclassical Laser Theory
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The FESLT gives us insight into

(%) Threshold behavior
(%) Laser intensity and power output

(%) Laser frequency and linewidth

Equation for Laser intensity T « £¥£ ®

AT &M
ot~ o

=+ [%-ai (u-w,,,m(%-.'a\]le,,ml‘+ C.C.

&, [tY+C.C.

2L
T
@ >9, : exponential growth
= (C%-—K.) T »
Q< 9¢ : exponential decay

We define Qp = Ola)AN, , AN, =§(_A-)



Semi-Classical Laser Theory

The FESLT gives us insight into

(%) Threshold behavior
(%) Laser intensity and power output

(%) Laser frequency and linewidth

Equation for Laser intensity T «« £*¥£ ®
dr E mt)
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3>9.. : exponential growth
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Q < 9. : exponential decay

Q¢ = OaYAN, , AN, = X

We define -
CV(a)

These are Key parameters that characterizes a laser

W
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Threshold Inversion
CV(a)

Example: Diode lasers & threshold behavior

Rot o« 1€]2
N

Laser
\

— , > go¢ AN




