Mental Warmup: What is a probability?

(1) Example: Coin toss

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

This is the Bayesian Interpretation of Probability

(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)

(3) Mixed Quantum & Classical Case

- We can easily envision a hybrid Qincunx that is part classical, part quantum.
- Physics needs an efficient description these kinds of intermediate situations

(4) Example: Quantum Trajectories

 Ensemble of 2-level atoms undergoing Rabi oscillation with random decays

Definition: A system for which we know only the probabilities $\{ \downarrow \}_k$ of finding the system in state $\{ \downarrow \}_k \}$ is said to be in a statistical mixture of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

<u>Definition</u>: Density Operator for pure states

Definition: Density Matrix

$$|\mathcal{L}(t)\rangle = \sum_{n} C_{n}(t)|u_{n}\rangle \Rightarrow$$

$$Q_{pn}(t) = \langle u_{p}|Q(t)|u_{n}\rangle = C_{p}(t)C_{n}^{*}(t)$$

The terms Density Operator and Density Matrix are used interchangeably

<u>Definition</u>: Density Operator for mixed states

$$g(t) = \sum_{k} n_k g_k(t), g_k = [4_k(t) \times 4_k(t)]$$

Note: A pure state is just a mixed state for which one ps = 1 and the rest are zero.

Let \triangle be an observable with $\begin{cases} eigenvalues & a_n \\ eigenvectors & (a_n^{(i)}) \end{cases}$

Let P_n be the projector on the eigen-subspace of a_n

For a <u>pure</u> state, $g(\ell) = |\psi(\ell)| \times |\psi(\ell)|$, we have

(i)
$$\text{Tr} g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |c_{n}|^{2} = 1$$

(ii)
$$\langle A \rangle = \langle \gamma(t)|A|\gamma(t)\rangle = \sum_{P} \langle \gamma|A|u_{P} \times u_{P}|\gamma\rangle$$

$$= \sum_{P} \langle u_{P}|\gamma \times \gamma|A|u_{P}\rangle = \sum_{P} \langle u_{P}|\gamma(t)A|u_{P}\rangle$$

$$= \sum_{P} [\gamma(t)A]$$

(iii)
$$P_n$$
 projector on subspace of $a_n \Rightarrow P(a_n) = \langle \psi(t)|P_n|\psi(t) \rangle = \text{Tr}[g(t)P_n]$

(iv)
$$g(t) = |\psi(t) \times \psi(t) + |\psi(t) \times \psi(t)|$$

= $\frac{1}{12} H[\psi(t) \times \psi(t) - \frac{1}{12} |\psi(t) \times \psi(t)| H$
= $\frac{1}{12} [H, g]$

Let \triangle be an observable with $\begin{cases} eigenvalues & a_n \\ eigenvectors & (a_n^{(j)}) \end{cases}$

Let P_n be the projector on the eigen-subspace of a_n

For a <u>mixed</u> state, $g(t) = \sum_{k} \gamma_k g_k(t)$, $g_k = [\psi_k(t) \times \psi_k(t)]$

(i)
$$\text{Tr}g(t) = \sum_{k} \eta_{k} \text{Tr}g_{k}(t) = 1$$

Density Operator formalism is general

(ii)
$$\langle A \rangle = \sum_{k} \eta_{k} \langle \psi_{k}(t) | A | \psi_{k}(t) \rangle$$

$$= \sum_{k} \eta_{k} \text{Tr}[g_{k}(t) A]$$

$$= \text{Tr}[g(t) A]$$

(iii) P_n projector on subspace of a_n
$$\Rightarrow$$

$$P(a_n) = \sum_{k} p_k \langle q_k(t)| P_n | q_k(t) \rangle = \text{Tr} [g(t) P_n]$$

[iv]
$$\dot{S}(t) = \sum_{k} p_{k}(|Y_{k}(t) \times Y_{k}(t)| + |Y_{k}(t) \times Y_{k}(t)|)$$

$$= \sum_{k} p_{k} \frac{1}{2} (H|Y_{k}(t) \times Y_{k}(t)| - |Y_{k}(t) \times Y_{k}(t)|H)$$

$$= \frac{1}{2} [H_{1} S]$$

Some important properties of the Density Operator

(1) g is Hermitian, $g^+ = g$ \Rightarrow g is an observable \Rightarrow \exists basis in which g is diagonal In this basis a pure state has g

diagonal element = 1, the rest = 0

(2) Test for purity.

Pure: $g^2 = g$ \Rightarrow Tr $g^2 = 1$

Mixed: $g^1 + g \Rightarrow \text{Tr } g^1 < 1$

(3) Schrödinger evolution does not change the 1/2

Tr g¹ is conserved
 pure states stay pure
 mixed states stay mixed

Changing pure

mixed requires non-Hamiltonian evolution − see Cohen Tannoudji D_{III} & E_{III}

A cooks recipe – interpretations of 9

Step 1 Add N atoms in state $|\Psi_A\rangle$ to bucket A Add N atoms in state $|\Psi_a\rangle$ to bucket B

We know have two ensembles, each of which consist of *N* atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir well

Pick an atom from C Which is Correct? The atom is in a pure state but we don't know if it is $|\Psi_A\rangle$ or $|\Psi_a\rangle$

The atom is in a mixed state

$$9 = \frac{1}{2} | \gamma_A \times \gamma_A | + \frac{1}{2} | \gamma_C \times \gamma_C |$$

There is no difference!

The two interpretations lead to identical predictions for any measurement we can do on atoms drawn from C

Quantum Mechanics:

If two descriptions lead to identical predictions for observable outcomes then they are identical

```
Loosely, (i) is a frequentist view
(ii) is a Bayesian view
```

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change Tr g2 (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

$$\dot{g} = -\frac{1}{4}[H_{1}g] = -\frac{1}{4}(Hg - gH)$$

matrix elements -

2-Level Atom
$$\Rightarrow$$

$$\begin{cases} 2 \text{ populations} \\ 2 \text{ coherences} \end{cases}$$

Consider the 2-Level Rabi problem with

$$H = H_0 + V \& V_{12} = -\frac{1}{2} h (X_{12} e^{-i\omega t} + X_{21}^* e^{i\omega t})$$

$$H = h \left(-\frac{1}{2} (X_{12} e^{-i\omega t} + X_{12}^* e^{i\omega t}) \right)$$

$$-\frac{1}{2} (X_{21} e^{-i\omega t} + X_{12}^* e^{i\omega t}) \qquad \omega_{21}$$

Substitute in (*), set
$$g_{12} = \widetilde{g}_{12} e^{i\omega t}$$

slow variable

(For a pure state $g_{12} = q_1 q_0^* = c_1 (c_2 e^{-i\omega t})^*$)

Make RWA, drop ~, and set $\chi_{21} = \chi$, $\chi_{21}^{*} = \chi^{*}$

$$\hat{S}_{11} = -\frac{1}{2} \left(\times \hat{S}_{12} - \times^* \hat{S}_{21} \right)$$
Rabi Eqs. for pure and mixed states
$$\hat{S}_{12} = \frac{1}{2} \left(\times \hat{S}_{12} - \times^* \hat{S}_{21} \right)$$

$$\hat{S}_{12} = \frac{1}{2} \left(\times \hat{S}_{12} - \times^* \hat{S}_{21} \right)$$

$$\hat{S}_{12} = \frac{1}{2} \left(\times \hat{S}_{12} + i \frac{X^*}{2} \left(\hat{S}_{22} - \hat{S}_{11} \right) = \hat{S}_{21}^*$$

Next: Non-Hamiltonian evolution

Types of events

(i) Elastic collisions: No change in energy

(ii) Inelastic collisions: Atom loss

(iii) Spontaneous decay: Transition (2)→11>

Simple Model of Elastic Collisions

Two atoms near each other

energy levels shift, free evol. of g_{i2} changed

Paradigm for perturbations that do not lead to net change in energy

Evolution of coherence (fast variables)

$$\dot{S}_{12} = -i \left[\omega_{1} + \delta \omega(\xi) \right] \mathcal{S}_{12} \qquad \begin{array}{c} \text{collisiona} \\ \text{history} \end{array}$$

$$\Rightarrow \mathcal{S}_{12}(\xi) = \mathcal{S}_{1}(0) e^{-i\omega_{1} \xi} e^{-i \int_{0}^{\xi} d\xi' \, d\omega(\xi')}$$

We need the ensemble average of $\mathfrak{G}_{12}(4)$

Assumptions:

- From atom to atom ∂ω(₺) is a
 Gaussian Random Variable
- Averaged over the ensemble < δωಟ್ರಿ = 0
- Collisions have no memory over time,

$$\langle \partial \omega(t) \delta \omega(t') \rangle_{t} = \frac{1}{T} \delta(t-t')$$

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\delta\omega(t')}\right\rangle = e^{-t/T}$$

It follows that: $g_{i2}(4) = g_{i2}(0)e^{-i\omega_{2i}t}e^{-t/\tau}$

Add this decay to the equation of motion to get

$$\dot{g}_{12} = (\dot{g}_{12})_{S.E.} + (\dot{g}_{12})_{E.C.} = -(i\omega_{21} - 1/\tau)g_{12}$$

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly, this is a steady loss of atoms

This is strange because Trg(t) is not preserved Convenient when working with quantities

Effect on probability amplitudes

Populations are ensemble averages of the type

$$g_{11}(t) = \langle |a_1(t)|^2 \rangle = \langle |a_1(0)|^2 \rangle e^{-\Gamma_1 t}$$

 $g_{12}(t) = \langle |a_2(t)|^2 \rangle = \langle |a_2(0)|^2 \rangle e^{-\Gamma_2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

$$\langle |a_1(\xi)| \rangle = \langle |a_1(0)| \rangle e^{-\frac{1}{2}/2} + \langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_2(\xi)| \rangle e^{-\frac{$$

Thus, for the coherences

$$S_{12}(t) = \langle a_1(t)a_2(t)^* \rangle = \langle a_1(0)a_2(0)^* \rangle e^{-1/2t} e^{-1/2t}$$

This gives us

elastic inelastic $\mathcal{G}_{12} = (\mathcal{G}_{22})_{3.6} - 1/\mathcal{T} \mathcal{G}_{12} - \frac{\Gamma_1 + \Gamma_2}{2} \mathcal{G}_{12}$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives the evolution

Step (2) She gives atom B to Bob and asks him to measure if it is in [4] or [2] and keep the result secret forever.

Result: Alice now has a 2-level atom in the state

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Final OPTI 544 Lectures: interaction drives the evolution

$$| \psi(0) \rangle = | 2 \rangle_{A} \otimes | Vac \rangle_{QEF} \Rightarrow \begin{array}{c} \text{Evolution} \\ \text{for time } t \end{array}$$

$$| \psi(t) \rangle = C_{2,0}(t) | 2 \rangle_{A} | Vac \rangle_{QEF} + \sum_{k} C_{1,1k}(t) | 1 \rangle_{A} | v_{k} = 1 \rangle_{QEF}$$

$$\text{photon "in the atom"} \qquad \text{photon in field mode } k$$

Cannot recover info in continuum of field modes

Probability $|C_{2,0}(\xi)|^2$ of having no decay Probability $\sum_{k} |C_{1,1_k}(\xi)|^2$ of having decay

No Coherence established between states 17,127

Conclusion: Decay moves population $(2) \Rightarrow (1)$ at rate A_{21} , damps coherence at rate A_{21} /2

$$\dot{g}_{14} = A_{21} g_{22}, \quad \dot{g}_{22} = -A_{21} g_{11}$$

$$\dot{g}_{12} = -\frac{A_{21}}{2} g_{12} = \dot{g}_{21}^{*}$$

Putting it all together:

$$\dot{g}_{11} = -\Gamma_{1} g_{11} + A_{21} g_{22} - \frac{1}{2} (Xg_{12} - X^{*}g_{21})$$

$$\dot{g}_{22} = -\Gamma_{2} g_{22} - A_{21} g_{22} + \frac{1}{2} (Xg_{12} - X^{*}g_{21})$$

$$\dot{g}_{12} = (i\Delta - \beta) g_{12} + \frac{iX^{*}}{2} (g_{22} - g_{11}) = g_{21}^{*}$$
where
$$\beta = \frac{1}{\tau} + \frac{A_{21}}{2} + \frac{\Gamma_{1} + \Gamma_{2}}{2}$$

These are our desired

Density Matrix Equations of Motion