Density Matrix Description of 2-Level Atoms

Mental Warmup: What is a probability?

(1) Example: Coin toss

— We can describe physical states by
probability distributions

— Probabilities are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

— We can describe physical states by
probability distributions

— Probabilities are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

This is the Bayesian
Interpretation of Probability

(3) Example: Quantum Quincunx

— We can describe physical states by
guantum wavefunctions (state vectors)

— Quantum states are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, quantum states are
subjective ( states of knowledge)

(3) Mixed Quantum & Classical Case

— We can easily envision a hybrid Qincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations
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(4) Example: Quantum Trajectories

— Ensemble of 2-level atoms undergoing
Rabi oscillation with random decays

(PL Atom #3 ...

(Pv. Atom #1 @9. Atom #2

Definition: Density Operator for pure states

Q) = Ite) X u(t)|

Definition: Density Matrix

B = 2 C 010> 8
Cpn (1) = <Ml @LB | > = CpH) G ()

Definition: A system for which we know only
the probabilities 41, of finding the system in
state (1, is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

The terms Density Operator and Density Matrix
are used interchangeably

Definition: Density Operator for mixed states

Q) =% Ay Qule), € =1, () Ky 4)|
%

Note: A pure state is just a mixed state for
which one 4lp-1 and the rest are zero.
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. eigenvalues @, . eigenvalues @,
Let A be an observable with { i G Let A be an observable with { _ G)
eigenvectors (a}') eigenvectors (a}')
Let P, be the projector on the eigen-subspace of a, Let P, be the projector on the eigen-subspace of a,
For a pure state, Q&)= I1t)Xw£)|, we have For a mixed state, g(+) = % Ya Calt) r € = 1, () Kepg (&)
Density O t
() Tegh) =S,k lc,It=1 () Tel) = Sn, Tgu) =1 |  formaliomis
n te general
(i) <A> = <y) Al = §<%|A|Mpmp”f-> (i) <R =2yt )1 lyg (1))
= ‘%“mpmp@gmmp) = §<uplgc+)A[up> = %W&T[Q&H\A]
(i) B projectoron svbspace ofa, W (i) B, projector on svbspace ofa, B
Plan) = IR 14> = Te [ QL6 P, ] Pla.)= % Nyl I 1Y, (1)) =Te [ Qle)P,]
(V) Sty = gty le) + X)) (V) G4 = Z (IR PR X))
= & HIRE Xl - 7% )X g ) [H = %mé (H1%, X L1 = M OX ) H)
4
= 7z [H ] = 0]
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Some important properties of the Density Operator

(1) & isHermitian, ¢*=g ¥ o isan observable

® 3 basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1, therest =0
(2) Test for purity.
Pure: g*'=q © TF

(3) Schrédinger evolution does not change the 4,

Tr g" is conserved
§ < pure states stay pure

mixed states stay mixed

Changing pure &) mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E;;,

A cooks recipe — interpretations of ©

Step1 Add N atomsin state [4,) to bucket A
Add N atoms in state |1/,> to bucket B

 —

We know have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir well

N x [Vg>

N x [Yg>

The atom is in a pure state but we

Pick an atom don’t know if itis [, or [1,)

from C

Which is

Correct? The atom is in a mixed state

Q=3 14 X0 | +3 14X %g
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There is no difference!

The two interpretations lead to identical predictions for
any measurement we can do on atoms drawn from C

Quantum Mechanics:

If two descriptions lead to identical predictions
for observable outcomes then they are identical

Loosely, (i) isa frequentist view

(ii) isa Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge
(subjective)
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Time Evolution of the Density Matrix

Challenge: We need “equations of motion” that
combine the Schrédinger Equation
with the effect of processes that can
change T €2 (measure of purity)

Approach: We do not have time for a rigorous
derivation, so will rely on plausible
arguments to justify the equations

Schrodinger Evolution: In general, we have

g = -+ [He] <-4 (Hg-gH)
matrix elements L

(%) 53,,M=--;;_RZ (Hot 8y Bu M)

9(9_ [ ') ga.l

S

2 populations
2-Level Atom ©)
2 coherences

Consider the 2-Level Rabi problem with
H=HytV & V= -1 J (X Wt X e™*)

o _ i (X“C.im"f)(:eju*)

H=4

(X ~1W& X elUL\ W,_,

Substitute in (%), set Q,, = éle'“t
L slow variable
~7 *
(For a pure state Q,=0,0;=C,(¢,&"™%)")

Make RWA, drop ~, and set X, =X, x{f:xﬁ

-

Rabi Eqgs. for
pure and
mixed states

‘9” = ~j": ( X‘@l‘)_—X*QNB
én, = i‘(xg;"x-pgu)

[ . - * 4
Q.= 14§y 1 %f‘ (en-2,) =&
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Next: Non-Hamiltonian evolution

Types of events

(i)  Elastic collisions: No change in energy

(ii) Inelastic collisions: Atom loss

(iii) Spontaneous decay: Transition [27 > 1)

Simple Model of Elastic Collisions

Two atoms near energy levels shift,

each other v free evol. of @, changed
E A —
N
Wy Wytd by
I R
> &

Paradigm for perturbations that do
not lead to net change in energy

Evolution of coherence (fast variables)

collisional

g.lq_ = =\ [Nu +30) (ﬂ\] gl?_ hisim.y
€
=> §ult)=Q 0\ Wyt (;df' O

We need the ensemble average of @ (+)

Assumptions:

—  From atom to atom Jw&(t) isa
Gaussian Random Variable

— Averaged over the ensemble <5cuu,'}7&=0
— Collisions have no memory over time,

@wméwcw}tzv—r’:é(f-ﬁts

—_-

Can show that t
’ —t| de" deale) -
averaged over time <e fo > YT
and the ensemble
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iyt —t
It follows that: Q,(¢) = @, () ™ o™/

Add this decay to the equation of motion to get

ém = L‘ém)s.e, + Céu)s.c,: B (r‘w.u - 1/7:)§1<L

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

A
- G

] >r'2'
Cu=(8)se — 178y

. ) SV
Qy = (Qu)s.e. “liey, \‘G.

This is strange because Tre(t) is not preserved
Convenient when working with quantities

N<RE> o N ({150, Fai€) 22

Effect on probability amplitudes

Populations are ensemble averages of the type

?n['a = QQ,&\P} :([01(0)[z>6"f-k

0y 1) = 18,015 = L[y (01 e F

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

la,py)=<la,el>e” it
£+

Lty = aane

Thus, for the coherences

L4t

elastic inelastic

v—

. o 7 +h
G = [gn\g.g\" J/’C Cp ~ '__3\-9: S,

This gives us
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Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

125
o @O

117 atom-field
1nteraction

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

19,1475 = @, 113,117, + 4, 115,125,

Step (2) She gives atom B to Bob and asks him to
measure if it is in (1)8 or l2>¢3 and keep

the result secret forever.

Alice now has a 2-level atom in the state

9= (6,12 113, <41+ 10, M 132l

Result:

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

125
o @OF

. 117 atom-field
1nteraction

interaction drives

Final OPTI 544 Lectures: the evolution

_ Evoluti
[ (0)> = (2% @ Woe e, B Filiimer

[4[6)>=C, 1) l;?ﬂ Voe Yget D C, (g1, 1%1 aer
Ko

photon “in the atom” photon in field mode k

Cannot recover info in continuum of field modes

— -

Probability |C, o (£)|* of having no decay
Probability > Ic, 1, (+)I* of having decay
%

No Coherence established between states |17, [27
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Conclusion: Decay moves population [27 > 1)
at rate A,;, damps coherence at rate A,,/2

.

Cu = Ay, Ql‘l, qu= -A‘u S

® -_A —.*
glz- -5}" @n_ =8y

Putting it all together:

éu =-f/ &, +A21?ﬁ2_;;_'(x@l?._x*g?-l)
éu:_ 9 Qs Ay, @9_2—‘-%()(9,,"?(*9”)

By =(i8~3) @y + 'l—)g( -2} = Gy

I A QL+l
where S = g a2
T X * 2

Density Matrix

These are our desired Equations of Motion




