Atom-Light Interaction: Multi-Level Atoms

Starting point — the Hydrogen atom Note: Frequencies for transitions n>n' n'<n"
ot g are very different => near-resonant approx.
1 e

Ho = yolie "T'"‘_EQ —\-F—l with a single transition frequency (~w,

Vegs (TR L) =-2F. _E'Ué.{.,) Levels {2 ) are generally degenerate with
respect to the quantum number m , so we

¥ :relative R :center-of-mass cannot isolate a 2-level system only through
its transition frequency.

We must therefore consider Selection Rules
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1 3 5 degeneracy This is the Parity Selection Rule !
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Next: We will find selection rules that derive from
the angular symmetry of the matrix element

We need to develop the proper math language
=> spherical basis vectors and harmonics

Consider an arbitrary set of orthonormal basis

- .
vectors &, é’; é’&. We can always write

Fa (P 8)+(REE (P E)E,
. . . - -5 - ) E) A
Cartesian basis: &, &2, § &,
(real-valued)
(( a _‘—\ o ( - ~
E.28=- £ (&,4i8,)
. . Xy Ly (R
Spherical basis: | £ - ﬁ(axﬂ{a)
(complex-valued) J -
\ a%zéo - 2-2:

Reminder: Scalar products of complex vectors

Dirac notation Regular notation
floy«ilb> 1c7] (G+B)-C B

= (al-i<bl) Iy =0.C-ibe

= <aley-<ble (anti-linear in 1% factor)

Scalar Products in the spherical basis

Homework: prove the relations

ra 9> ~ > - > 2
820G, Eg By E-Felafdy,

Next: Rewrite

P&, = x=Ysmocosd
F-g.o K :T%m@Sinq)
F.8, =2 =Vcoso

Compare to the Spherical Harmonics
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g, in polar coordinates

~

E:> - gg_ =

Ty

. . - .
to verify, plug in & in terms
- =

of

RN




Atom-Light Interaction: Multi-Level Atoms

This finally gives us 2, in the spherical basis:

P2 (P& v 2 A

920,44 =t

End math preamble

Back to the Matrix Elements

First:

s - . .
=R EM electric dipole
Vexs 2 interaction

"‘l + qx
E®) = LE, ( CELBFE™)  lectric field .

. larization &
L ez ey PO %

'(-9)
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Ve = '@@EJ(Z Y,Q %,).(é’qe“"“ﬁ (_ﬂ&é"_aeiwf)

N
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Ve €7 [ V9% o [-1)3 Y, )

The matrix element = overlap integral of the form

Vll = <'\'£'Wl‘ I VCX+'V‘2.M>

«< faﬁl" d?mfe—’m'(ﬂ Al

m&

Vexs

—

(VA (P ) gl

where the wavefunctions @, (7)= Rno(r) Y, (8.9)

-

= {nlw' | Vg [Inm)

= R« f oy (V) (R (P Tt v

radial angular integral
integral

Thus, to within a constant factor

= {g'w| \/9 "“*+£-1)g’y‘ﬁ e emy = vF
From the RWA, we know the resonant terms are
N Ry = 12'm)

__f— 12> = ]E'Wl'>

, 115 = 18m)>
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And thus in the RWA we get  (use ()= (-1)"Y;"* )

V}_[ < <2'W\' | \/fe_";w{_IEM)

Viy < <2ml[~1\9’3’{g e;m!!Z‘M'>

dropping the
G factor (-\*

thwjds)_(‘/g')*flg’ Yt {1,95Lm R

Va JAR (PP < <ot e

!

Clebsch-Gordan coefficients

Next: We can understand this as conservation of
angular momentum when a photon is absorbed

or emitted

Selection Rules for Electric Dipole
Transitions

Reminder: Addition of Angular Momenta

(4™,

Let 3=3,+3L = eigenstates l4ym, >
lgm>

We can write [gm> in the basis (4,m,>1§,m,>

identity

1gm> =2 13, m Ay g ms 3y m, [1gm >
mth
Wl‘['ML *
Clebsch-Gordan coefficients

CG’s are non-zero when

Conservation of
Angular Momentum

-4 €44 daty

My+M, =M

Going back to the matrix element, V, =0

when [13> combined w/|2m? is consistent w/ [¢'m' >

4 4 4

“photon” AM ground state AM excited state AM
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The corresponding Selection Rules are

Multi-Level Atoms

General ED Selection Rules

L'-2 =011, w-m=¢, §=0*1

Combining with the Parity Rule, this gives us the

Electric Dipole Selection Rules

Remarkably

These selection rules generalize to complex

AL = %1 L : total e orbital A. M.

AF =0 t1 E: total orbital + spin A. M.
Amg=q =0,£1 ¢: polarization of EM field

Clebsch-Gordan coefficients ( Ectmt > Egm, )
(F'mnl VIFmeyoe {19, Fmp | #omp

{Eme | VIF,me Y < {1, -a, F'ma | Fmgd

many — electron atoms, and after we include
both electron and nuclear spins in the theory.

- From a physics perspective, this reflects the
conservation of angular momentum in
rotationally invariant systems, and therefore
transitions that do not conserve angular
momentum are forbidden

- To find the Clebsch-Gordan coefficients for
different transitions we would need to use
the Wigner-Eckart theorem, the proof of
which is beyond this course.

Hydrogen atom

1¢-2s: forbidden 1€ -3p: allowed

. - > e I
Total spin: F = J+T , T=L+S

¢ A XN

nuclear  orbital electron spin
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E
18 State: A F
90 L
J’”ﬂ.; P=0,1 1y 1
. ' 1
1P state: 2Py, o
321/21 P:.O’i ::
J=34, F=12
1Sy L
y o

Level diagram for

transitions 1Sy, (F=1) = 20y, (F=2)

m=-2 -1 1
F=
m= 1 15’11(’ 1}
Polarization: | 2=0 /9 1 \ 9=-1

Note: When the field polarization is pure linear
or circular the levels are coupled in pairs,
and the oscillator strengths depend on
the Clebsch-Gordan coefficients

Demo: Clebsch-Gordan Coefficients and
Oscillator Strengths from Mathematica

<+~ Dense or hot gases: Collisions redistribute
Atoms between m-levels on very short time
scales and the gas looks like a gas of 2-level
atoms w/an effective coupling strength. If the
dipole is oriented at random with the field,
Then <J¥\ 2 >&u0l.¢s v 3|<’fl>[
The same |s true tor unpolarized light

<% Short interaction time: If the atoms are
“unpolarized”(random m-level populations)
and the interaction too brief to change this,
the atoms behave as an ensemble with
different oscillator strengths

<% Optical pumping: In dilute gases without
collisions, atoms can be “pumped” into a
single, pure state, e. g., 1Sy, (F=1,m.=1).
If driven with &=1 polarization this will
realize a true 2-level system, as 2¢;, (F'=2, m}=2)
can only decay back to 1sy, (F=1,m.=7)

<% If more than one frequency or polarization is
Present, one can often drive Raman transitions



