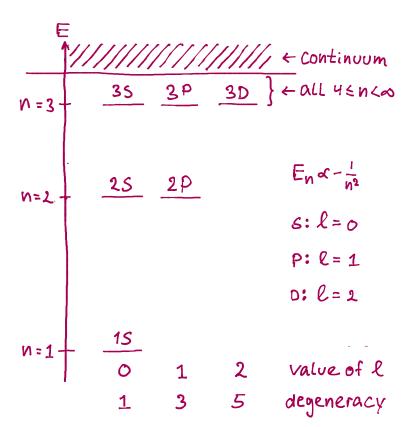
Starting point – the Hydrogen atom

$$H_{A} = \frac{\rho^{2}}{2m} - \frac{1}{4\pi \xi_{o}} \frac{e^{2}}{1\vec{\Gamma}_{l}}$$

$$V_{ext}(\vec{\Gamma}_{i}, \vec{R}_{i}, t) = -e\vec{r} \cdot \vec{E}(\vec{R}_{i}, t)$$

$$\vec{r} : \text{relative} \quad \vec{R} : \text{center-of-mass}$$



Note: Frequencies for transitions $N \rightarrow N'$, $N'' \rightarrow N'''$ are very different in near-resonant approx. with a single transition frequency $\omega \sim \omega_{m}$

Levels ML are generally degenerate with respect to the quantum number M, so we cannot isolate a 2-level system only through its transition frequency.

We must therefore consider Selection Rules

Interaction matrix element

Wavefunction parity is even/odd depending on ℓ

$$Q_{nlm}(\vec{r}) = (-1)^l Q_{nlm}(-\vec{r})$$

 \Rightarrow $\langle |V| \rangle$ can be non-zero only if $(\ell - \ell')$ is odd.

This is the **Parity** Selection Rule!

Next: We will find selection rules that derive from the angular symmetry of the matrix element

We need to develop the proper math language spherical basis vectors and harmonics

Consider an arbitrary set of orthonormal basis vectors $\vec{\xi}_1$, $\vec{\xi}_2$. We can always write

$$\vec{r} = (\vec{r} \cdot \vec{\epsilon}_i) \vec{\epsilon}_i + (\vec{r} \cdot \vec{\epsilon}_j) \vec{\epsilon}_j + (\vec{r} \cdot \vec{\epsilon}_k) \vec{\epsilon}_k$$

Cartesian basis:

(real-valued)

$$\left[\vec{\mathcal{E}}_{i} = \vec{\mathcal{E}}_{i} = -\frac{1}{\sqrt{2}} (\vec{\mathcal{E}}_{x} + i\vec{\mathcal{E}}_{y})\right]$$

Spherical basis:

(complex-valued)

$$\begin{cases}
\vec{\mathcal{E}}_{i} = \vec{\mathcal{E}}_{j} = -\frac{1}{\sqrt{2}} (\vec{\mathcal{E}}_{x} + i \vec{\mathcal{E}}_{y}) \\
\vec{\mathcal{E}}_{i} = \vec{\mathcal{E}}_{i} = -\frac{1}{\sqrt{2}} (\vec{\mathcal{E}}_{x} - i \vec{\mathcal{E}}_{y}) \\
\vec{\mathcal{E}}_{k} = \vec{\mathcal{E}}_{0} = \vec{\mathcal{E}}_{2}
\end{cases}$$

Reminder: Scalar products of complex vectors

Dirac notation

Regular notation

(anti-linear in 1st factor)

Scalar Products in the spherical basis

Homework: prove the relations

$$\vec{\mathcal{E}}_{q}^{*} = (-1)^{q} \vec{\mathcal{E}}_{q}, \quad \vec{\mathcal{E}}_{q'} \cdot \vec{\mathcal{E}}_{q} = \delta_{qq'}, \quad \vec{\mathcal{E}}_{q'} \cdot \vec{\mathcal{E}}_{q'}^{*} = (-1)^{q} \delta_{q'q}$$

Rewrite $\vec{r} \cdot \vec{\epsilon}_{a}$ in polar coordinates Next:

$$\vec{r} \cdot \vec{\epsilon}_{x} = x = r \sin \theta \cos \phi$$

$$\vec{r} \cdot \vec{\epsilon}, = 2 = r \cos \theta$$

Compare to the Spherical Harmonics

$$V_1^0(\theta, \varphi) = \sqrt{\frac{3}{4\pi}} \cos \theta$$
, $V_1^{\pm 1}(\theta, \varphi) = \pm \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\varphi}$

This finally gives us $\vec{\xi}_{1}$ in the spherical basis:

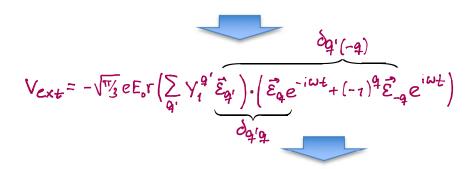
$$\vec{r} = \sum_{q=0,\pm 1} (\vec{r} \cdot \vec{E}_q) \vec{E}_q = r \sqrt{\frac{4\pi}{3}} \sum_{q=0,\pm 1} \gamma_1^q \vec{E}_q$$

End math preamble

Back to the Matrix Elements

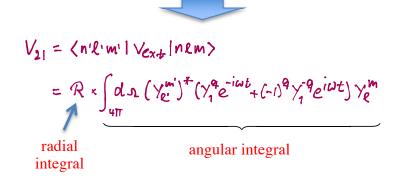
First:

$$V_{ext} = -e\vec{r} \cdot \vec{E}(t)$$
 electric dipole interaction
$$\vec{E}(t) = \frac{1}{2} E_o \left(\vec{\mathcal{E}}_q e^{-i\omega t} + \vec{\mathcal{E}}_q^* e^{i\omega t} \right)$$
 electric field polarization
$$\vec{\mathcal{E}}_q$$
 electric field polarization
$$\vec{\mathcal{E}}_q$$



The matrix element = overlap integral of the form

where the wavefunctions $\varphi_{n\ell_m}(\vec{r}) = R_{n\ell}(r) \gamma_{\ell}^m(\theta, \varphi)$



Thus, to within a constant factor

$$V_{21} = \langle \ell' m' | Y_1^9 e^{-i\omega t} + (-1)^9 Y_1^9 e^{i\omega t} | \ell m \rangle = V_{12}^*$$

From the RWA, we know the resonant terms are

$$\frac{1}{e^{-i\omega t}} |2\rangle = |\ell'm'\rangle \qquad \frac{1}{e^{i\omega t}} |2\rangle = |\ell'm'\rangle$$

$$\frac{e^{i\omega t}}{11\rangle = |\ell m\rangle} |1\rangle = |\ell m\rangle$$

And thus in the RWA we get (use $(Y_e^{lm})^* = (-1)^{lm} Y_e^{-lm}$)

$$V_{11} \propto \langle \ell' m' | \gamma_1^4 e^{-i\omega t} | \ell m \rangle$$
 $V_{12} \propto \langle \ell m | (-1)^4 \gamma_1^{-4} e^{i\omega t} | \ell' m' \rangle$

$$V_{21} \propto \int d\Omega (Y_e^{m'})^* Y_1^q Y_e^m \propto \langle 1, q; lm | l'm' \rangle$$
 $V_{12} \propto \int d\Omega (Y_e^{m})^* Y_1^{-q} Y_e^{m'} \propto \langle 1, -q; l'm' | lm \rangle$

Clebsch-Gordan coefficients

Next: We can understand this as conservation of angular momentum when a photon is absorbed or emitted

Selection Rules for Electric Dipole Transitions Reminder: Addition of Angular Momenta

Let
$$\vec{J} = \vec{J}_1 + \vec{J}_2$$
 \implies eigenstates
$$\begin{cases} |\vec{a}_1 m_1\rangle \\ |\vec{a}_2 m_2\rangle \\ |\vec{a}_m\rangle \end{cases}$$

We can write $|\dot{a}_{1}m\rangle$ in the basis $|\dot{a}_{1}m_{1}\rangle|\dot{a}_{2}m_{2}\rangle$

identity
$$|\dot{a}m\rangle = \sum_{m_1, m_2} |\dot{a}_1 m_1; \dot{a}_2 m_2\rangle \langle \dot{a}_1 m_1; \dot{a}_2 m_2||\dot{a}m\rangle$$

$$= \sum_{m_1, m_2} \langle \dot{a}_1 m_1; \dot{a}_2 m_2||\dot{a}m\rangle||\dot{a}_1 m_1; \dot{a}_2 m_2\rangle$$
Clebsch-Gordan coefficients

CG's are non-zero when

Conservation of Angular Momentum

$$|\dot{a}_1 - \dot{a}_2| \le \dot{a} \le \dot{a}_1 + \dot{a}_2$$
 $m_1 + m_2 = m$

Going back to the matrix element, $V_{2_1} \neq 0$

when $|19\rangle$ combined w/ $|\ell m\rangle$ is consistent w/ $|\ell' m'\rangle$

"photon" AM

ground state AM

excited state AM

The corresponding Selection Rules are

$$\ell' - \ell = 0, \pm 1, \quad m' - m = q, \quad q = 0, \pm 1$$

Combining with the Parity Rule, this gives us the

Electric Dipole Selection Rules

$$\ell' - \ell = \pm 1$$
, $m' - m = q$, $q = 0, \pm 1$

Remarkably

- These selection rules generalize to complex many electron atoms, and after we include both electron and nuclear spins in the theory.
- From a physics perspective, this reflects the conservation of angular momentum in rotationally invariant systems, and therefore transitions that do not conserve angular momentum are forbidden
- To find the Clebsch-Gordan coefficients for different transitions we would need to use the Wigner-Eckart theorem, the proof of which is beyond this course.

General ED Selection Rules

 $\Delta L = \pm 1$ \vec{L} : total e orbital A. M.

 $\triangle F = 0, \pm 1$ $\vec{\vdash}$: total orbital + spin A. M.

 $\Delta m_F = q = 0, \pm 1$ Q: polarization of EM field

Clebsch-Gordan coefficients $(E_{F,M_F} > E_{F,M_F})$

Hydrogen atom

15-25: forbidden 15-2P: allowed

Total spin: $\vec{F} = \vec{J} + \vec{I}$, $\vec{J} = \vec{L} + \vec{S}$

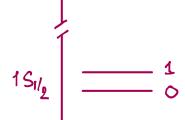
nuclear orbital electron spin

1S State:

283/2

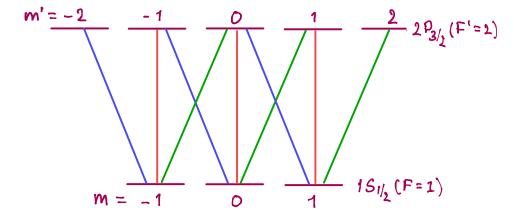
2P State:

$$J = \frac{1}{2}$$
, $F = 0, 1$



Level diagram for transitions

$$1S_{l_2}(F=1) \rightarrow 2P_{3/2}(F=2)$$



Polarization:

$$|q=0|$$
 $|q=1|$ $|q=-1|$

Note: When the field polarization is pure linear or circular the levels are coupled in pairs, and the oscillator strengths depend on the Clebsch-Gordan coefficients

Demo: Clebsch-Gordan Coefficients and Oscillator Strengths from Mathematica

- Dense or hot gases: Collisions redistribute
 Atoms between *m*-levels on very short time
 scales and the gas looks like a gas of 2-level
 atoms w/an effective coupling strength. If the
 dipole is oriented at random with the field,
 Then
 The same is true tor unpolarized light
- Short interaction time: If the atoms are "unpolarized" (random m-level populations) and the interaction too brief to change this, the atoms behave as an ensemble with different oscillator strengths
- Optical pumping: In dilute gases without collisions, atoms can be "pumped" into a single, pure state, e. g., 1S_{1/2} (F=1, m_E=1). If driven with Ē_q=1 polarization this will realize a true 2-level system, as 2P_{3/2} (F¹=2, m'_P=2) can only decay back to 1S_{1/2} (F=1, m_E=1)
- ★ If more than one frequency or polarization is Present, one can often drive Raman transitions