Density Matrix Description of 2-Level Atoms

Time Evolution of the Density Matrix

Schrodinger Evolution: In general, we have
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H=HytV & V= -1 J (X Wt X e™*)

o _ i (X“e:i“t'H(:e,i“*J

H=A4

(X ~1W& X. elNL\ W,_,

Substitute in (%), set Q,, = éle'”t

L slow variable
~ ¥
(For a pure state Q,=0,0; =C,(¢,&""*)")

Make RWA, drop ~, and set X, =¥, x;f:x*

-

. : Rabi Eqgs. for
8= ‘;_(X?;,_—Y*QZ.B pure and
mixed states

én, = i‘(xg;"x-pgu)

[ . - * 4
Q.= 14§y 1 §‘ (en-2,) =&




Density Matrix Description of 2-Level Atoms

Next: Non-Hamiltonian evolution

Types of events

(i)  Elastic collisions: No change in energy

(ii) Inelastic collisions: Atom loss

(iii) Spontaneous decay: Transition [27 > 1)
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These are our desired Equations of Motion







Emission and Absorption —

So far we have derived a set of Equations of Motion
for the elements of the Density Matrix:
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Population Rate Equations

Steady State Solutions: (requires [} =17 =0)

1 X*/s
9[&.‘ -,A( ‘11. gu)

-ix/e
Q‘ll: p+iD (g‘l‘l "gn}

@

x
Xgu¥*gy < o8 (g, g,)

Let éu =0 B

Plug into egs for Populations to get
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These egs. let us find steady state values for the
populations and coherences in terms of X AAy,B
when (and only when) Qn Q=0



Emission and Absorption —

Note: The terms remaining after elimination of
Qs , 8y, are commonly identified with
induced or stimulated processes. They are
proportional to [X]*, [EDI1 and thus the
intensity of the light field.

Def: Absorption Rate = Stimulated Emission Rate
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Population Rate Equations

Elastic Collision Broadening

In hot and dense gases the dominant source of
relaxation is often elastic collisions between atoms

Q. reaches steady state
much faster than g, &,
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We can solve the eq. for ©, assumingitisin
steady state for given values of S, &,
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This yields Rate Equations for the populations
only, valid in the collision broadened regime
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% This is another example of adiabatic elimination
of a fast variable (the coherence), leaving us with
simpler equations for the slower variables.

%k From these we can find the transient behavior
of the coherences g, @,
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Note: When collisions are very frequent the dipole

{gt> is oriented at random relative to the
driving field. In that case
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Photon Flux and Cross Section
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This allows us to recast the Rate Eqgs
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We see that for each atom

# of absorption events
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# of stim. emission events

Note: Given N atoms, the total # of events are
Na(sY g, and NTd©,,. This is useful

when we care about the total power in
the light field, as we do in laser theory

Solution of the Rate Equations
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The solution is a damped approach to Steady state
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* This transient behavior is valid in the collision
broadened regime.

% Without collisions the transient regime
Is one of damped Rabi oscillations.

* The steady state value @, (») is good regardless

Limiting cases:
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