
8. Lasers

Laser is an acronym for Light Amplification by Stimu-
lated Emission of Radiation that describes the basic
physical principle of its operation. Gordon, Zeiger and
Townes [8.1] showed for the first time in 1955 that a mi-
crowave could be amplified by NH3 molecules on the
inversion transition at λ= 1.26 cm (Fig. 4.13) if these
molecules were prepared in such a way that the upper
level of the transition had a larger population than the
lower one. With such inverted NH3 molecules inside
a microwave cavity, the first “maser” (microwave am-
plification by stimulated emission of radiation) could
be operated.

Schawlow and Townes published a paper in 1958
with detailed discussions of how the maser principle
might be extended into the visible spectral range [8.2].
The first experimental realization of a laser was de-
monstrated in 1960 by Maiman, who built a ruby laser,
which was pumped by a helical flashlamp and emitted
coherent radiation at λ= 694 nm [8.3].

Since then, lasers have been developed spanning the
whole spectral range from the far infrared down to the
vacuum ultraviolet region. They have proved to be va-
luable tools not only for the solution of many scientific
problems but also for numerous technical applications.

In this chapter we will discuss the basic physical
principles of lasers, the most important classes of lasers
and some interesting novel applications. More detailed
discussions can be found in the vast literature on lasers
[8.4, 5, 6].

8.1 Physical Principles

A laser basically consists of three components
(Fig. 8.1):

1. The active medium where an inverted popula-
tion N(E) is created by selective energy transfer.
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Fig. 8.1. Schematic setup of a laser

This population distribution N(E) deviates stron-
gly from a thermal Boltzmann distribution (Fig. 8.2)
in such a way that N(Ei) > N(Ek) for Ei > Ek,
contrary to a thermal population

N(E)∝ e−E/kT .

2. The energy pump, (flashlamp, gas discharge, elec-
tric current or another laser) that generates the
population inversion.

3. The optical resonator that stores the fluorescence
emitted by the active medium in a few modes of the
radiation field (see below). In these modes the pho-
ton number becomes Nphot � 1. Therefore, in these
modes, the induced emission becomes much lar-
ger than the spontaneous emission (see Sect. 7.1.1).
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Fig. 8.2. Selective population inversion (Ni > Nk) in spite of
Ei > Ek , deviating from a thermal population distribution (red
dashed curve)
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The optical resonator furthermore reflects the in-
duced emission back into the active medium and
allows many paths back and forth through the me-
dium, thus realizing a long amplification path. This
converts the light amplifier into a light oscillator if
the total amplification exceeds the total losses.

8.1.1 Threshold Condition

When an electromagnetic wave with frequency ν tra-
vels in the z direction through a medium (Fig. 8.3) its
intensity changes according to Beer’s absorption law

I(ν, z)= I(ν, 0) · e−α(ν)·z . (8.1)

The frequency-dependent absorption coefficient

α(ν)= [Nk − (gk/gi)Ni]σ(ν) (8.2)

is determined by the absorption cross section σ(ν) of the
transition Nk → Ni , the population densities Ni , Nk, of
the levels with energies Ei , Ek with ∆E = Ei − Ek =
hν, and their statistical weights gi , gk (the statistical
weight of a level with total angular momentum quantum
number J is g = 2J +1). For

Ni > (gi/gk)Nk ⇒ α(ν) < 0 (8.2a)

this means that the transmitted wave will be ampli-
fied instead of attenuated. Such a deviation (8.2a) from
a thermal equilibrium population is called inversion and
the medium where this inversion is realized is called the
active medium.

When the active medium with length L is placed
between two parallel mirrors (Fig. 8.1) the light wave is
reflected back and forth and passes through the active
medium many times, where it is amplified each time by
the factor

G(ν)= I(ν, 2L)

I(ν, 0)
= e−2α(ν)·L , (8.3)

which is larger than 1 for α(ν) < 0.
Unfortunately there are also losses that attenuate the

wave. These are reflection, diffraction, absorption, and
scattering losses.

Reflection losses. A mirror with reflection coefficient R
only reflects the fraction R< 1 of the incident intensity.
If absorption losses of the mirror can be neglected, the
fraction (1− R) of the incident intensity is transmitted
through the mirror.
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Fig. 8.3. Attenuation (α> 0) or amplification (α< 0) of a light
wave passing through a medium

Absorption and scattering losses. In case of gas lasers,
the windows of the tube containing the active medium
may absorb and scatter some of the transmitted light.
For solid lasers the end surfaces of the laser rod may
scatter and reflect some light. Also, the active medium
might not have a spatially uniform inversion, leaving
locations with α > 0. Finally, the mirror surfaces are
not perfect. They can scatter light and the reflecting
layers can also show small absorptions.

Diffraction losses. Depending on the parameters of the
optical resonator (aperture diameter a, mirror separa-
tion d and radius of curvature r of the mirrors) the wave
being reflected back and forth shows an angular spread
due to diffraction (see below). This means that only
part of the intensity is reflected back into the active me-
dium, which represents a diffraction loss per roundtrip
through the resonator.

We will describe the sum of all these losses per roundtrip
by the loss factor γ . The intensity after one roundtrip has
decreased (without amplification by the active medium)
by the factor e−γ :

I(2d)

I(0)
= e−γ with γ = γr+γsc+γdif . (8.4)

Taking into account the amplification by the active
medium we obtain the gain factor

G(ν)= I(ν, 2d)

I(ν, 0)
= e−(2α(ν)·L+γ) . (8.5)

For G(ν) > 1 the amplification overcomes the losses
and the light amplifier becomes a light oscillator. Ac-
cording to (8.2) and (8.5) the threshold condition for
starting the self-sustained oscillation (i. e., the laser
oscillator) is

2α(ν) · L+γ ≤ 0 . (8.5a)

Inserting (8.2) this gives

2[Nk − (gk/gi)Ni] ·σ(ν) · L+γ ≤ 0 . (8.5b)
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Fig. 8.4. Illustration of the losses in a laser resonator

The minimum inversion ∆N = Ni(gk/gi)− Nk for
lasing must therefore fulfill the threshold condition

∆N = Ni(gk/gi)− Nk ≥∆Nthr

= γ(ν)

2σ(ν) · L
. (8.6)

If the energy transfer from the pump into the active me-
dium is sufficiently strong to achieve ∆N>∆Nthreshold

the light will be amplified for each roundtrip, because
the amplification exceeds all losses.

The laser oscillation for a continuous laser with
time-independent pump power builds up in the
following way.

Fluorescence photons, spontaneously emitted by the
upper level Ei into the direction of the resonator axis
are reflected back into the active medium, where they
are amplified, reflected back into the medium by the
rear mirror, etc. This results in a photon avalanche
with increasing photon number after each roundtrip, if
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Fig. 8.5. Photon avalanche generated by a photon passing
through the active medium due to induced emission

G(ν) > 1 (Fig. 8.5). Part of this radiation power, circu-
lating between the two resonator mirrors is transmitted
by one of the mirrors. With increasing photon number
the probability of induced emission increases, which
decreases the population inversion until it is depleted
down to the threshold value. Here, gain and losses are
just equal and the laser has reached its stationary state,
where the emission is constant. The emitted laser power
depends on the pump power and the pumping efficiency.

For pulsed lasers the pump power is time-dependent.
After a certain pumping time the threshold inversion has
been reached. Now laser oscillation starts, which de-
pletes the inversion due to induced emission. The time
dependence of the laser output power depends on the re-
lative rates +dNi/dt of pumping and −d(Ni − Nk)/dt
of inversion depletion by induced emission. For suffi-
ciently strong pumping the laser output power follows
the time-dependent pump power and a laser pulse is
emitted that is shorter than the pump pulse because it
only starts after inversion has been reached and ends
when the pump power falls below the threshold value
(Fig. 8.6).

In cases of strong depletion by stimulated emission
the inversion drops below the threshold already during
the pump pulse and the laser emission stops, until the
pump has again built up sufficient inversion. Now the
laser emission starts again. In such cases (e. g., for the
ruby laser) the laser output consists of more or less
irregular spikes with short durations, which are emitted
while the pump power is above threshold (Fig. 8.7).
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Fig. 8.6. Pump-pulse power PP(t), laser power PL(t), thres-
hold inversion α= γ and time-dependent inversion∆N(t) for
a pulsed laser
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Fig. 8.7. Schematic illustration of spikes in the output of
a flashlamp-pumped solid-state laser with long relaxation
times τi , τk
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Fig. 8.8. The net gain depends on the effective path length
through the active medium

The amplification factor is largest for photons with
the longest path through the active medium. These are
those photons that travel along the resonator axis. Pho-
tons emitted into directions inclined to the axis, are not
reflected back into the active medium and are therefore
less amplified (Fig. 8.8). If their amplification does not
reach the threshold value, they cannot contribute to the
laser oscillation. Depending on the geometric dimensi-
ons of the active medium and the limiting apertures of
the optical resonator the laser oscillation is restricted to
a small angular divergence around the resonator axis.
This results in a laser beam, transmitted through one
of the resonator mirrors, which has a small divergence
and appears in many cases as nearly parallel light beam
with a small diameter.

8.1.2 Generation of Population Inversion

The minimum inversion, required for laser oscillation,
can be achieved by a selective pump process, that po-
pulates the upper level Ei of the laser transition more
strongly than the lower level Ek. The pump energy can
be transferred either as a pulse (e. g., by flashlamps)

or continuously (e. g., by electron impact in a stationary
gas discharge). In the first case, laser emission occurs as
a pulse, in the second case it occurs continuously (cw =
continuous wave operation). We will provide examples
of both cases.

The flashlamp-pumped ruby laser historically re-
presents the first demonstration of pulsed laser
operation. Its active medium is a cylindrical rod consi-
sting of an Al2O3 crystal, that is doped with about 1%
Cr+++ ions. The level scheme of these Cr+++ ions is
shown in Fig. 8.9. By absorption of light from the flash-
lamp the ions are pumped from the ground state E0

into the levels E1 and E2, which are strongly broade-
ned by interaction with the host crystal. The resulting
broad absorption lines overlap with the maximum of
the spectral continuum emitted by the flashlamp filled
with xenon and can therefore be effectively pumped.
The two upper levels transfer part of their excitation
energy in a very short time (10−10−10−11 s) to vibra-
tional energy of the crystal due to a strong interaction
with their surroundings. This loss of excitation energy
results in fast radiationless transitions into a sharp lower
level Ei , which is the upper level of the laser transition
Ei → E0 at λ= 694 nm.

In order to achieve population inversion, the number
of Cr+++ ions in the level Ei must be larger than that
in the ground state E0. A direct pumping of level Ei on
a transition E0 → Ei could not achieve inversion, be-
cause as soon as the populations of both levels become
equal, the absorption of the pump light on the laser
transition becomes zero and the pump can no longer
populate level Ei . The intermediate levels E1 and E2

are therefore essential for the realization of laser oscil-
lation. One needs at least three levels, as indicated in
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Fig. 8.9. Level scheme of the ruby laser
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Fig. 8.9 by the encircled numbers (where E1 and E2

have been combined into a single level). Such a level
scheme for laser operation is called a three level system.
The ruby laser is therefore a three level laser.

Note:

Under special conditions it is also possible to achieve
inversion for a short time in a two-level system, if the
pumping time is short compared to all relaxation times
of the system and even shorter than the Rabi oscilla-
tion time TR = π ·h/(Mik · E(νik)), where Mik is the
matrix element for the transition i → k and E is the
electric field vector of the pump wave. These conditi-
ons, however, apply only to very few real systems that
are specially designed.

There are several possible experimental configura-
tions of the ruby laser using linear or helical flashlamps
(Fig. 8.10). While Maiman used the helical design for
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Fig. 8.10a,b. Two possible configurations for a pulsed ruby
laser. (a) Linear flashlamp with cylindrical reflector cavity
with elliptical cross section (b) Helical flashlamp, originally
used by Maiman for his first ruby laser

his first laser, nowadays the linear configuration is
preferred. Here the cylindrical ruby rod and the li-
near flashlamp are placed along the two focal lines
of a cylindrical reflector with elliptical cross section
(Fig. 8.10a). The light emitted by the flashlamp is focu-
sed into the ruby rod from all sides, due to the imaging
characteristics of the pump light reflector with ellip-
tical cross section. The mirror surface is coated with
dielectric layers with maximum reflection at those wa-
velengths preferentially absorbed by the Cr+++ ions
on the transitions E0 → E1, E2. The parallel end faces
of the ruby rod are polished and one end face is coa-
ted with a highly reflecting layer, the other endface for
the laser output with a partially transmitting layer. The
flashlamp is fired by discharging a high voltage capa-
citor through the lamp. While the pump pulse lasts for
approximately 1−3 ms, the laser output is a pulse of ty-
pically 0.2−0.4 ms, generally consisting of many short
(≈ 1 µs) spikes.

Our second example is the He-Ne-laser, which re-
presents the most commonly used cw gas laser. This
laser is based on a four-level system and the pumping
is achieved by inelastic collisions of electrons with he-
lium and neon atoms in a stationary gas discharge in
a glass tube. Its principle design is shown in Fig. 8.11.
A gas discharge is initiated by a high voltage between
a cylindrical anode and an aluminum cathode surroun-
ding a glass or quartz capillary (1−4 mm diameter).
The power supply for a He-Ne laser has a typical out-
put of 5−10 mA at a voltage of 1 kV. The whole tube
is filled with a mixture of about 88% He and 12%
Ne at a total pressure of 1−5 mbar. In this discharge
(in particular in the narrow capillary, where the cur-
rent density is high), He and Ne atoms are excited
into many high lying energy levels. Most of these le-
vels have a short lifetime and decay by spontaneous
emission. In the helium atom there are two metastable

Fig. 8.11. Design of a He-Ne laser
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states with long lifetimes (see Sect. 6.2). These are the
2 3S1(τ = 20 ms) state and the 2 1S0 state (τ � 600 s),
which cannot decay by allowed dipole transitions into
lower states. They are populated not only by electron
impact but also by cascading spontaneous emissions
from higher levels (Fig. 8.12). In the discharge, the-
refore, a high concentration of He-atoms in these
states is built up. The electron configuration of excited
states in neon is 1s2 2s2 2p5 n′l′, with n′ = 3, 4, 5, . . . .
In “Paschen-notation” (L-S-coupling) the sublevels
of each configuration are numbered with decrea-
sing energy. For example the 2p5 3p configuration
has ten sublevels 2S+1 L J , which are (with decre-
asing energy) 1S0,

3 P1,
3 P0,

3 P2,
1 P1,

1 D2,
3 D1,

3 D2,
3 D3

and 3S1 numbered by 1, 2, . . . 10.
Both metastable He states are in close energy reso-

nance with excited neon levels. By collisions between
excited He atoms and ground state Ne atoms this energy
resonance results in large cross sections for the colli-
sional transfer of the excitation energy from the He to
the Ne atoms (near resonance collisions of the second

Fig. 8.12. Level scheme of the He-Ne laser with three possible
laser transitions

kind) according to the scheme:

He∗(2 1S0)+Ne(2 1S0)→He(1 1S0)+Ne∗(5s)
(8.7)

He∗(2 3S1)+Ne(11S0)→He(1 1S0)+Ne∗(4s)

This energy transfer results in a selective excitation
of the neon levels 4s and 5s , which achieve a higher
population than the lower levels 4p and 5p, resulting
in a population inversion on the transitions 5s → 5p
(λ= 3.39 µm), 4s → 4p (λ= 1.15 µm) and 5s → 4p
(λ= 633 nm). Such a system, where the laser transition
occurs between two excited states, and four levels are
involved (the He ground state, a metastable He state and
the two Ne levels) is called a four-level system.

Since the population of the lower laser levels is very
small, only a small percentage (≈ 10−5) of all He atoms
needs to be excited into the metastable states, contrary
to the three level system of the ruby laser where more
than 50% of all Cr+++-ions had to be pumped into the
upper laser level. Therefore only about 10−6 of all neon
atoms occupy the upper levels of the laser transitions.

The level scheme shows that laser oscillation is pos-
sible for several transitions with different wavelengths.
However, only those transitions can reach laser thres-
hold, for which the gain exceeds the losses. The losses
can be selected by a proper choice of the resonator mir-
rors. If the reflection of these mirrors is high for one
wavelength but low for the others, laser oscillation can
only occur at this favored wavelength.

The gain on the transition 5s → 4p (λ= 633 nm)
reaches only a few percent for a length of 20 cm in
the active medium. Therefore the losses have to be
correspondingly low and laser operation could only
be achieved after high reflecting dielectric mirrors had
been designed with reflectivities of 99.99% for one mir-
ror and 98% for the transmitting mirror. The gain can
be increased by using the isotope 3He instead of 4He,
because here the energy resonance between the meta-
stable He levels and the excited Ne levels is even closer
than in 4He and therefore the cross section for energy
transfer from He to Ne is larger.

8.1.3 The Frequency Spectrum
of Induced Emission

Both the gain −α(ν) · L and the losses γ(ν) depend on
the frequency ν of the light wave. When the pump pro-
cess starts, the laser reaches the threshold first for those
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frequencies where the threshold inversion ∆Nthr is mi-
nimum. The frequency dependence of the gain depends
on the active medium. For gaseous media (He-Ne-laser,
Ar+-laser) the spectral lines are Doppler-broadened,
showing a Gaussian line profile with a width of several
GHz (109 Hz). For solid state lasers or liquid lasers the
line width is mainly determined by interaction of the la-
ser atoms, ions or molecules with their surroundings. It
is generally much broader than in gases.

The loss factor γ mainly depends on the charac-
teristics of the optical resonator. It has minima at the
resonance frequencies of the resonator. Therefore la-
sing starts at those resonator resonances that lie within
the spectral gain profile of the active medium. If the
spacing between resonator modes is smaller than the
spectral width of the gain profile, the laser oscillates on
several wavelengths simultaneously. This deteriorates
the coherence properties of the laser emission. If os-
cillation on a single wavelength is required, additional
wavelength selecting elements have to be introduced.
This can be realized either by a special resonator de-
sign or by prisms or optical gratings inside or outside
the resonator.

Since the laser resonator plays a central role for the
spectral characteristics of laser emission, we will first
discuss optical resonators.

8.2 Optical Resonators

In Sect. 3.1.2 it was shown that inside a closed resonator
a radiation field can exist with an energy density wν(ν)
that is equally distributed over all resonances or modes
of the cavity. In the optical spectral range where the
wavelength λ is small compared to the dimensions of
the cavity, the number of modes within the frequency
interval dν is (see (3.10b))

n(ν) dν = 8π(ν2/c3) dν .

For ν = 5×1014 s−1 (λ = 600 nm) the number of
modes within a Doppler broadened spectral line
(∆ν = 109 s−1) is n(ν)∆ν = 2.5×1014 m−3. This im-
plies that the spontaneous emission from excited atoms
inside a closed cavity is distributed over many mo-
des, which means that the average photon number per
mode is very small. In such a closed cavity the induced
emission, started by spontaneous photon avalanches, is
spread out over many modes. Because the total power

emitted by spontaneous and induced emission has to be
supplied by the pump energy, one needs an exceedingly
high pump power in order to achieve laser oscillation
on all these modes. The laser emission would then be
distributed over many directions into the solid angle 4π
and the directionality of laser emission would be lost.

Closed cavities, which are used for the realization
of masers in the microwave region, where λ is
comparable with the cavity dimensions, are not
suitable for optical lasers.

8.2.1 The Quality Factor of Resonators

Assume that the kth resonator mode contains the ra-
diation energy Wk(t). If no energy is fed from external
sources into this mode, its stored energy will decrease
as

dWk

dt
=−βk ·Wk , (8.8)

which yields the time-dependent stored energy

Wk(t)= Wk(0) · e−βkt (8.9)

with the loss factor βk. After the time τ = 1/βk the
energy stored in the kth mode has decayed to 1/e of its
initial value at t = 0. This time can be regarded as the
mean lifetime of a photon stored in this resonator mode.
We define the quality factor Qk of the kth resonator
mode as 2π times the ratio of the energy, stored in this
mode to the energy loss per oscillation period T = 1/ν
of the radiation with frequency ν:

Qk =−2πν ·Wk

dWk/dt
. (8.10)

Inserting (8.8) and (8.9) gives the relation between the
loss factor βk and the quality factor Qk:

Qk =−2πν/βk . (8.11)

The loss factor γ per roundtrip is then

γk = βk · (2d/c) . (8.12)

Even if at t = 0 the radiation energy, supplied by sponta-
neous emission, is the same for all modes, those modes
with a high Q-factor will store this energy for a longer
time while those with a low Q-factor loose their energy
after a short time.
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8.2.2 Open Optical Resonators

In order to concentrate the induced emission onto a few
modes, the Q-factor of the resonator must be large for
these modes (i. e., the losses must be small), while it
should be sufficiently small for all other modes, so
that for a given pump power the threshold for laser
oscillation is not reached for these modes.

Open resonators, consisting of a suitable arrange-
ment of optical mirrors can fulfill this condition. We
will illustrate this by the example of two plane-parallel
mirrors M1 and M2 with reflectivity R1 and R2 and with
diameters 2a, which are separated by the distance d
(Fig. 8.4). This represents, in fact, a Fabry-Perot inter-
ferometer (FPI) used in spectroscopy as a spectral filter
with high resolution. There is, however, an essential
difference from conventional FPI, where the mirror se-
paration d is small compared to the diameter 2a of
the mirrors. For this laser resonator the situation is
the opposite: here d � 2a. This makes a large diffe-
rence with respect to diffraction, which is negligible in
a conventional FPI, but essential in a laser resonator.

We will first regard the reflection losses.
A light wave reflected back and forth between

the mirrors suffers reflection losses and its intensity
decreases per roundtrip according to

I(2d)= I0 R1 R2 = I0 · e−γr . (8.13)

The reflection loss factor γr is defined as

γr =− ln(R1 R2) . (8.14)

Since the transit time for one roundtrip is T = 2d/c, the
mean lifetime τ of a photon stored in the resonator and
traveling along the resonator axis is

τ = 2d

c · ln(R1 R2)
(8.15)

if no other losses were present.

EXAMPLE

R1 = 1, R2 = 0.98, d = 0.5 m ⇒ γr = 0.02 and τ =
1.5×10−7 s.

We will now discuss the diffraction losses of open
resonators.

Because of the finite diameter 2a � d of the mir-
rors diffraction losses are generally not negligible.
This is illustrated by Fig. 8.13c. A plane wave tra-
veling from below onto the mirror M1 is no longer

Fig. 8.13. (a) Plane waves as stationary field solutions in a cu-
bic closed resonator compared with curved wave fronts in an
open resonator with diffraction losses. (b) Diffraction pattern
of a plane wave behind a circular aperture with diameter 2a,
compared in (c) to a similar pattern after reflection by a plane
mirror of size 2a

reflected as a plane wave but becomes divergent be-
cause of diffraction. This is completely analogous to
a plane wave passing through an aperture with diame-
ter 2a (Fig. 8.13b). Here the transmitted wave shows an
intensity profile

I(Θ)= I0

(
2J1(x)

x

)2

with x = 2πa

λ
sinΘ

(8.16)

with a central maximum and higher diffraction orders
(see textbooks on optics). The central diffraction maxi-
mum has an angular width between the first two nodes of
the Bessel function J1(x) on both sides of the maximum
at x = 0, which gives

sinΘ = 1.2λ/(2a)⇒Θ ≈ λ/(1.7a) . (8.17a)
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Fig. 8.14. (a) Fresnel zones on mirror M1,
as seen from the center A of the other mir-
ror M2. (b) The three regions of d/a with the
Fresnel number N > 1, N = 1, and N < 1

Light with larger diffraction angles does not hit the
mirror M2 in Fig. 8.13c and is therefore lost. If the total
light power included in the 0th diffraction order, should
be reflected by M2 the diffraction angle Θ has to obey
the relation

tanΘ ·d ≈Θ ·d ≤ a .

Inserting (8.17a) yields

1.7
a2

λ ·d ≥ 1 . (8.17b)

The ratio

NF = a2/(λd) (8.18)

is called the Fresnel number of the resonator. It gives the
number of Fresnel zones on the surface of M1, which
can be seen from the center A of M2 (Fig. 8.14).

A more detailed calculation shows [8.7, 8] that for
NF � 1 the diffraction loss factor is γd ≈ 1/N . This
meansthatinaresonatorwithFresnelnumber NF thelight
power drops after one roundtrip by a factor exp(−1/N)
if only diffraction losses were present. When the light
wave makes m roundtrips, the Fresnel number should be
NF >m ·γR if the diffraction losses are to be smaller than
the reflection losses.

EXAMPLE

For a FPI with a = 2 cm and d = 1 cm, typically for
spectroscopic applications, the Fresnel number for
λ= 500 nm is NF = 8×104. The diffraction loss factor
is γd = 1.2×10−5 and diffraction losses are therefore
negligible. The phase fronts of a wave inside the FPI
are planes and the mirror surfaces are nodes of the stan-
ding wave. These dimensions are, however, not suitable
for a laser resonator.

The resonator of a gas laser with plane mirrors (dia-
meter 2a = 0.2 cm and a separation of d = 50 cm) has

for λ= 500 nm a Fresnel number NF = 4. The diffrac-
tion losses per roundtrip amount already to 25% and
a He-Ne-laser with such a resonator would not reach
threshold.

8.2.3 Modes of Open Resonators

While the modes of closed cavities can be described
as a superposition of plane waves (see Sect. 3.1.2) with
amplitudes and phases that are constant on planes per-
pendicular to the wave vector k, in open resonators both
quantities are changing across these planes because the
diffraction causes a curvature of the wave fronts. Pos-
sible modes of open resonators are therefore not plane
waves!

The amplitude and phase distribution A(x, y) and
ϕ(x, y) of modes in an open resonator with the resonator
axis in z-direction can be determined in the following
way.

The light wave being reflected back and forth
between the two resonator mirrors corresponds to, re-
garding the diffraction effects, a wave passing through
a series of equidistant apertures with the same size as
the mirrors (Fig. 8.15). This is shown in optics by Ba-
binet’s theorem. When a plane wave passes through
the first aperture in the plane z = 0 the amplitude dis-
tribution A(x, y) will change due to diffraction. The
amplitude will at first decrease more at the edges than
in the center, until the diffraction losses are equal for
all values of x and y. We assume that after having
passed the nth aperture, the diffracted wave will have
reached a stationary state, where the relative amplitude
distribution A(x, y)will no longer change, although the
absolute total amplitude may still decrease. This implies
the relation:

An(x, y)= C · An−1(x, y) (8.19)
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Equivalent system
of equidistant apertures

Resonator
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Fig. 8.15. The diffraction of a wave traveling back and forth
between two mirrors M1 and M2 is equivalent to that of a wave
passing through a series of equidistant apertures

where the constant C with |C|< 1 does not depend on
x and y.

The amplitude distribution An(x, y) across the
nth aperture can be calculated from the distribution
An−1(x′, y′) across the foregoing aperture, using Kirch-
hoff’s diffraction theory. The light emitted by every
point (x′, y′) contributes to the amplitude A(x, y) in the
nth aperture. From Fig. 8.16 we obtain the relation

An(x, y)=− i

2λ

∫
x′

∫
y′

An−1(x
′, y′)

1

�
e−ik�

× (1+ cosϑ) dx′ dy′ . (8.20)

Inserting (8.19) gives an integral equation for the am-
plitude A(x, y), which can be generally solved only
numerical, except for special cases where analytical so-
lutions are possible. The constant factor C in (8.19) is
found to be

C = (1−γd)
1/2 · eiϕ (8.21)

cos d/ϑ = ρ

P x,y( )

P x',y'( )

z

ϑ
ρ

ρ = + ( − ) + ( − )2 2 2 2d x x' y y'

dn 1− n

a d >>a

Fig. 8.16. Illustration of Eq. (8.20)
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0

Fig. 8.17. One-dimensional electric field distribution in the x
direction for some resonator modes

where γB is the diffraction factor, and ϕ is the phase
shift, caused by the curvature of the wave fronts, due to
diffraction.

Some solutions of the integral equation (8.20) are
illustrated in Fig. 8.17. They correspond to stationary
solutions as standing waves between the two resona-
tor mirrors and are called transverse electromagnetic
(TEM) modes of the open resonator. They are labe-
led by three indices, which give the number of nodes
of the standing wave in the x-, y-, and z-directions
(Fig. 8.18). The TEM0,0,q modes with no nodes in x-
and y-direction are called fundamental modes. Their

TEM00

TEM00

Cartesian
coordinates: x,y

TEM10

TEM01

TEM20

TEM02

TEM01

TEM10

TEM11

TEM11

TEM22

TEM12

Cylindrical
coordinates: r,ϑ

y

x

ϑ

r

a)

b)

Fig. 8.18a,b. Schematic representation of electric field distri-
bution in the xy-plane inside the resonator (a) In Cartesian
coordinates (b) In cylindric coordinates
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k-vector points into the ±z-direction and they have q
nodes along the z-axis. Their electric field amplitude
distribution E(x, y) shows a Gaussian profile.

Generally, mirrors of circular size are used and
the active medium also has a circular cross section.
Because of this cylindrical symmetry, cylinder coordi-
nates (r, ϕ, z) are better suited for the description of the
amplitude distribution of the modes. The fundamental
modes are then described by the radial field amplitude
distribution

E(r, ϕ, z)= E0 e−(r/w)
2
,

where w is the beam waist, i.e. for r =w the amplitude
has decreased to E0/e. Because the intensity is related
to the electric field amplitude by

I = cε0 E2

we obtain the intensity distribution of the fundamental
modes

I(r, z)= I0 e−2(r/w(z))2 (8.22)

where the beam waist r =w(z), for which the intensity
has dropped to I(w)= I(0)/e2 can depend on the z-
coordinate (Fig. 8.19).

The higher transverse modes TEMn,m,q with n,m >
0 correspond to standing waves with k-vectors that are
inclined by a small angle α against the resonator axis
(Fig. 8.20). The path length between the two mirrors is

s = d+ (λ/2)(m2+n2)1/2 . (8.23a)

Fig. 8.19. Radial intensity profiles I(r, z) and beam waists
ws(z) in a confocal resonator
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Fig. 8.20. Direction of the wave vector kmn of a transverse
mode TEMm,n,q against the resonator axis

The inclination angle is

tanα= [
(λ/d) · (m2+n2)1/2

]1/2
. (8.23b)

EXAMPLE

d = 50 cm, λ = 500 nm, m = n = 1 ⇒ tanα = 1.2×
10−3 ⇒ α= 0.07◦ = 4.2′.

Resonators with plane mirrors are often not the best
choice for two reasons. They have large diffraction los-
ses and they are very critical regarding alignment. A tilt
by an angle ε changes the direction of the reflected
beam by 2ε, and the reflected beam might not pass back
through the active medium (Fig. 8.21a).

EXAMPLE

d = 1 m and a = 2 mm. If the laser beam should pass
50 times through the active medium, the deviation from
the correct alignment of the mirrors should not be larger
than
ε= 2×10−3/50= 4×10−5 rad= (

2.4×10−3
)◦= 8.5′′.

Resonator with
plane mirrors

Confocal resonator
r     r     d1 2= =

a) b)

ε

2ε

ε

Fig. 8.21a,b. Different sensitivities against misalignment for
resonators with plane mirrors (a) compared to confocal
resonators with curved mirrors (b)
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Fig. 8.22. Phase
fronts at diffe-
rent locations z
in a confocal re-
sonator with the
mirrors at z =
±d/2

Spherical mirrors are less critical with respect to
alignment, as is shown in Fig. 8.21b for the example
of a confocal resonator, where the mirrors with radius
of curvature r are separated by the distance d = r. The
focal points of both mirrors coincide.

Resonators with spherical mirrors have lower dif-
fraction losses, because they refocus the divergent
diffracted beam and therefore decrease the beam spot
size on the mirrors, if their radius of curvature r and
their distance d is chosen properly.

In Fig. 8.19 the beam profile for the fundamental
modes are shown for a confocal resonator with two
spherical mirrors with equal radii of curvature r. The
smallest spot size appears in the middle of the resonator
at z = 0 when the mirrors are at z =±d/2. In Fig. 8.22
the phase fronts of the fundamental mode in a confocal
resonator are illustrated. At z = 0 in the middle of the
resonator they are plane, at the mirrors they coincide
with the mirror surfaces.

8.2.4 Diffraction Losses of Open Resonators

The diffraction losses of a standing wave inside a re-
sonator depend on the radial intensity distribution I(r).
The larger the intensity at the edges of the mirrors or
of limiting apertures inside the resonator, the larger are
the diffraction losses. This implies, that the fundamen-
tal modes TEM00q have the lowest diffraction losses
while the higher transverse modes with n,m > 0 suf-
fer larger losses. In Fig. 8.23 the diffraction losses for
the fundamental and for some transverse modes are
plotted as a function of the Fresnel number NF for re-
sonators with plane mirrors and for confocal resonators
with curved mirrors. This illustrates that for confocal
resonators diffraction losses are much lower. In fact,

Fig. 8.23. Diffraction losses of some modes in resonators with
plane and with curved confocal mirrors, as a function of the
Fresnel number F

a He-Ne-laser can only operate with curved mirrors,
because otherwise the diffraction losses would be too
high for the small gain achievable in a discharge with
only 10−15 cm length.

These diffraction losses offer the possibility to eli-
minate higher transverse modes and to achieve laser
oscillation solely on fundamental modes. The resona-
tor configuration has to be chosen in such a way, that
the transverse modes suffer sufficiently high losses, to
prevent them from reaching the oscillation threshold.

EXAMPLE

When the gain of the active medium per roundtrip
is 10% (G(ν)= 1.1 in (8.3), the Fresnel number of
a confocal resonator has to be NF < 0.8, according to
Fig. 8.23, in order to prevent all transverse modes from
oscillation. For a wavelength λ= 600 nm and a mirror
separation d = 50 cm the limiting aperture must have
a diameter of 2a = 2(NFλd)1/2 < 10−4 m ≈ 1 mm.

8.2.5 The Frequency Spectrum
of Optical Resonators

For the fundamental modes with m = n = 0 a standing
wave can build up in a resonator with plane mirrors if
an integer multiple of the half-wavelength fits between
the mirrors:

d = qλ/2 ⇒ νr = qc/(2d) . (8.24a)

The resonance frequencies νr of neighboring fundamen-
tal modes are separated by

δνr = νr(q)−νr(q−1)= c/(2d) . (8.24b)
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The spacing δνr is called the free spectral range of the
resonantor.

For the transverse modes TEMnmq the resonance
frequencies are obtained from the solutions of the inte-
gral equation (8.20), which can be solved analytically
for the confocal resonator [8.9]. One obtains

νr = c

2d

(
q+ 1

2 (m+n+1)
)
, (8.24c)

which converts to (8.24a) for m = n = 0, if q is repla-
ced by q∗ = q+ 1

2 . When m+n is an odd integer, the
eigenfrequencies of the transverse modes are just in the
mid between two fundamental (also called longitudinal)
modes.

Standing TEMnmq waves with these eigenfrequen-
cies have minimum losses. They are stored inside the
resonator for a much longer time then waves with non-
resonant frequencies. The total losses can be described
by the sum

γ = γr+γsc+γdiffr

of the loss factors for reflection losses, scattering and
diffraction losses, where γdiffr sharply increases with m
and n.

The threshold condition

−2α(ν)L−γ(ν) > 0

is only fulfilled for those resonance frequencies which
lie within the spectral gain profile of the amplifying
transition of the active medium (Fig. 8.24). The laser
emission consists of all these frequencies and the total

Resonator modes

Spectral
gain profileNet gain

Treshold
gain

0.5

1.0

1.5

2.0

2.5

ν1 ν2ν0 ν

G

∆ν

M1 M2

d

γ

∆ν = ( )c / 2ndL

0L2 =γ−⋅α−

Fig. 8.24. Net gain G(ν) for resonator modes within the gain
profile of the active medium. The vertical black lines give
the frequencies of a multimode laser oscillating only on
fundamental modes TEM0,0,q

bandwidth of the laser emission depends on the width
of the gain profile above the threshold line −2αL = γ
in Fig. 8.24.

EXAMPLES

1. He-Ne Laser: d = 50 cm⇒ δνr = c/2d = 300 MHz.
Within the gainprofile with∆νD = 1.5 GHz are Five
longitudinal modes. If the discharge tube diameter
is 2a< 1 mm, the diffraction losses are too high for
transverse modes and the laser oscillates solely on
these five fundamental modes.

2. Ruby laser: d = 10 cm ⇒ δνr = 1.5 GHz. With
2a = 6 mm the diffraction losses are smaller than
the high gain even for higher transverse modes.
The width of the gain profile is about 30 GHz. This
means that besides about 20 fundamental modes
many transverse modes are present in the emission
of the ruby laser.

8.3 Single Mode Lasers

In order to achieve laser oscillation on a single
fundamental mode several measures can be taken.

The simplest one is the shortening of the resona-
tor length d below a value where the mode spacing
δνr = c/(2d) becomes larger than one-half of the spec-
tral width of the gain profile at the threshold line. This,
however, generally reduces the gain for gas lasers and
only small output powers can be achieved. For solid
state lasers with a large gain per centimeter, this might
be a solution, but the spectral gain profile of these la-
sers is generally very broad and even short cavities still
might result in multimode operation.

The better, and most commonly used method for
achieving single mode operation is the insertion of addi-
tional frequency selective optical elements into the laser
resonator. Such an element can be, for instance, a tilta-
ble plane parallel glass plate with reflecting surfaces on
both sides (Fig. 8.25a), which represents a Fabry-Perot
etalon. As shown in textbooks on optics, the transmis-
sion of this etalon with reflectivity R on both sides is
given by

T = 1

1+ F · sin2(δ/2)
(8.25)
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Fig. 8.25a–d. Selection of a single resonator mode (a) Expe-
rimental setup (b) Resonator modes within the gain profile of
the active medium (c) Transmission T(ν) of the etalon (d) Net
gain of the laser with the etalon inside the resonator

with

F = 4R

(1− R)2
.

The phase shift δ= 2π∆s/λ between two adjacent inter-
fering partial beams with angles of incidence α against
the normal to the plate surfaces (Fig. 8.26) is determined
by the optical path difference

∆s = 2t
√

n2− sin2 α . (8.26)

From (8.25) it follows that T = 1 for δ= 2m ·π. This
is fulfilled for all wavelengths λm =∆s/m i. e. for all
frequencies νm = c/λm = (c/∆s) ·m, m = 1, 2, 3, . . . .

Adjusting the tilting angle α correctly, one of the
frequencies νm can coincide with a resonator eigen-
frequency inside the gain profile (Fig. 8.25c). Only for

Fig. 8.26. Path difference in a plane parallel glas plate

this frequency are the total losses small, for all other
resonator eigenfrequencies the transmission of the eta-
lon is small and if the reflectivity R of the etalon is
sufficiently high the total losses for these frequencies
are larger than the gain and they do not reach oscilla-
tion threshold (Fig. 8.25d). The laser then oscillates on
a single fundamental mode if the transverse modes are
eliminated by high diffraction losses.

The mean line width of such a single mode laser is
mainly determined by technical fluctuations of the opti-
cal resonator length n ·d, where n is the refractive index
between the resonator mirrors. Since the laser frequency
is given by the eigenfrequency of the resonator

νL = νr = q · c/(2nd)

fluctuations ∆n of the refractive index or ∆d of the
resonator length result in corrsponding fluctuations of
the laser frequency

−∆νL

νL
= ∆n

n
+ ∆d

d
. (8.27)

EXAMPLES

1. If the mirror separation d = 50 cm changes by 1 nm,
this results in a relative frequency change ∆ν/ν =
2×10−9. At a laser frequency of ν = 5×1014 s−1

we obtain ∆νL = 1 MHz!
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2. If the air pressure between the mirrors changes by
1 mbar, this results in a change ∆n/n = 2.5×10−7

of the refractive index, which means a frequency
shift of 125 MHz at ν = 5×1014 s−1

Such technical fluctuations can be partly compen-
sated, if one of the resonator mirrors is mounted on
a piezocrystal (Fig. 8.27). This consists of a material,
that changes its length under an external voltage ap-
plied to its end faces. If part of the laser output is
sent through a very stable Fabry-Perot (Fig. 8.28), the
transmitted intensity changes when the laser frequency
changes. A photodiode behind the FPI gives an output
voltage that reflects this intensity change. The output is
compared with a reference voltage and the difference is
amplified and applied to the piezocrystal, which chan-
ges the resonator length and brings the laser frequency
back to its wanted value. Such a feedback control system
can stabilize the laser frequency within about 1 Hz! New
very sophisticated devices can even reach a stability of
1 mHz = 10−3 Hz.

The physical limitation to the line width of the laser
is due to the following effect.

The laser emission starts with avalanches of photons
induced by spontaneous emission. Since the sponta-
neous photons are randomly emitted, the amplitudes
and phases of these avalanches are random. The to-
tal laser output consists of a superposition of such
avalanches. This results in amplitude- and phase fluc-
tuations of the laser wave. The amplitude fluctuations
are compensated by a feedback mechanism of the active
medium: A positive peak in the amplitude reduces the

Fig. 8.27. (a) Piezocylinders and their (ex-
aggerated) change of length with applied
voltage (b) Laser mirror epoxide on a pie-
zocylinder (c) Mirror plus piezomount on a
single-mode tunable argon laser
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Fig. 8.28. Laser wavelength stabilization onto the slope of the
transmission T(λ) of a stable reference FPI

inversion and thus the amplification, while a negative
deviation from the average amplitude increases the am-
plification. Such a feedback mechanism does not work
for phase fluctuations, which lead to a finite line width
(Sect. 7.4.3). A quantitative derivation gives the famous
Schawlow–Townes formula [8.2] for the lower limit of
the line width of a single mode laser:

∆νL = πhνL

PL
·∆ν2

r . (8.28)

Here ∆νr is the width of a resonator resonance for
an empty resonator, and PL is the output power of
the single mode laser. In Fig. 8.29 the resulting laser
profile is plotted on a logarithmic scale, together with
the Doppler-broadened background of the spontaneous
emission.

The theoretical limit, which gives for PL = 1 W and
∆νN = 1 MHz a line width of 10−6 Hz has never been
realized in a practical experiment due to the technical
perturbations mentioned above. With normal expen-
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Fig. 8.29. Spectral profile of laser emission for an idealized
laser without technical perturbations, plotted on a logarithmic
scale

diture, a line width of about 100 kHz–1 MHz can be
achieved.

Note:

A laser width a line width ∆νL = 1 MHz has a cohe-
rence length of ∆sc = c/∆νL = 300 m! However, for
a multimode argon laser with a bandwidth of 5 GHz the
coherence length is only ∆νc = 6 cm, which is compa-
rable to that of a normal discharge lamp, where a single
emission line has been selected.

8.4 Different Types of Lasers

The different experimental realizations of lasers can be
divided into three main groups according to their active
medium:

• Solid-state lasers
• Liquid lasers
• Gas lasers

Each of these types can be operated in a pulsed mode or
continuously (cw operation). Depending on the kind of
energy transfer from the pump into the active medium
we distinguish between optically pumped lasers (e. g.,
the ruby laser and other solid-state lasers, such as the
neodymium laser or the titanium-sapphire laser, and the

liquid-dye laser), and electrically pumped lasers (the
semiconductor laser and most gas lasers pumped by an
electric discharge).

Many types of lasers emit on fixed frequencies,
corresponding to discrete transitions in atoms or mole-
cules. Their wavelengths can be changed only slightly
within a narrow gain profile of the atomic or mole-
cular transition. We will call them “fixed-frequency
lasers.”

For spectroscopic applications “tunable lasers” are
of particular importance, where the laser wavelength
can be tuned over a broader spectral range. These lasers
have a broad gain profile and the laser wavelength can
be selected within this range by wavelength-selecting
optical elements (prism, optical grating or interferome-
ter) inside the laser resonator. Tuning the transmission
peak of these elements allows a continuous tuning of
the laser wavelength over the whole gain profile. Such
single-mode tunable lasers represent an intense, narrow-
band coherent wavelength-tunable light source, which
has proved to be of invaluable advantage for numerous
spectroscopic problems.

Helical magnetElectron beam

M1 M2

x x

z z

v = 0 v = 0.8 c

Θ

Photon
c

zv−e −e

0z wλ sλ
w0z λ+

⎟
⎠
⎞

⎜
⎝
⎛

−λ 1
v
c

z
w

a)

b)

c)

Fig. 8.30. (a) Schematic arrangement of a free-electron laser
(b) Radiation of a dipole at rest (ν = 0) and a moving dipole
with ν � c (c) Phase-matching condition
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A completely different concept of tunable lasers uses
high energy relativistic electrons from an accelerator as
active medium. These electrons are forced onto oscil-
latory paths in a periodically changing magnetic field,
where the electrons emit radiation. With a properly cho-
sen period length of the alternating magnetic field, the
contributionsof theradiationfromthedifferentsegments
of theperiodicstructuresuperimpose inphaseandaddup
to an intense wave in the forward direction of the average
electron path (Fig. 8.30). The wavelength of the cohe-
rent emission depends on the energy of the electrons and
can extend from the far infrared into the far ultraviolet.
With high energy accelerators even the X-ray region can
be reached. Such lasers are called free-electron lasers
because their active medium consists of free electrons.

In the following sections we will discuss the most
commonly used laser types.

8.4.1 Solid-state Lasers

The active medium of solid-state lasers are cylindrical
rods of glass or single crystals, which are doped with
special atoms, ions or molecules that can be optically
pumped into excited states. The doping concentration
varies between 0.1% to about 3%, depending on the kind
of host material. In Table 8.1 some examples of solid-
state lasers are compiled with their characteristic data.

All these solid-state lasers are optically pumped. Of-
ten pulsed flashlamps are used as pump sources, which
results in a pulsed laser output. Although ruby lasers
were the first lasers, these are being replaced more and
more by neodymium lasers, which consist of a glass
rod doped with Nd+++ ions emitting laser radiation
at λ= 1.06 µm. The advantage of the Nd lasers is ba-
sed on the fact that it represents a four-level system
(Fig. 8.31), which needs less inversion and therefore
less pump power than the three-level ruby laser. Its in-
frared emission can be converted by optical frequency
doubling (see Sect. 8.5) into the visible range.

The laser threshold can be further lowered by re-
placing the glass in the Nd-glass laser by a crystal of
yttrium-aluminum-garnet (YAG), which has a higher
heat conductivity and can therefore more effectively
transfer the excess energy N(hνp−hνL) (produced as
heat in the rod when N photons are emitted) to the
cooling system.

The pulse durations of these solid-state lasers range
from microseconds to milliseconds and the output pulse

Table 8.1. Examples of solid-state lasers that can be operated
in a pulsed and a cw mode

Laser type Active Host crystal Laser-wave-
Atom length
or Ion (µm)

Ruby laser Cr+++ Al2O3 0.6943
(Saphir)

Neodynium- Nd+++ Glass 1.06
Glass-laser

Neodynium- Nd+++ Y3Al5O12, 1.06
YAG-Laser CaF2, CaF3 0.9−1.1

Titanium- Ti+++ Al2O3 0.65−1.1
Sapphire

Alexandrit Cr+++ BeAl2O4 0.7−0.83

Cobalt- Co++ MgF2 1.5−2.1
laser

Holmium- Ho+++ YAG 2.06
laser

Erbium- Er+++ YAG 2.9
laser

Colour- vacancies alkali- 0.8−3.5
center of alkali halogenid- depending
laser ions crystal on the

crystal

Fig. 8.31. Level scheme of the Nd:glas laser
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energies from 1 mJ to about 1 J, which gives peak
powers from the kW range to many MW.

In order to achieve higher output powers, the output
of the laser oscillator is sent through an optical ampli-
fier, consisting of one or several optically pumped rods,
where inversion is achieved (Fig. 8.32). These laser am-
plifiers have a similar setup as the laser oscillator, but
without the mirrors, to prevent self-starting laser os-
cillation in these stages. The oscillator and amplifier
are separated by an optical isolator in order to prevent
feedback into the oscillator.

All lasers compiled in Table 8.1 can also be pumped
by continuous pump sources, e. g., with continuous la-
sers. They then emit cw radiation with a wavelength λ
that can be tuned within the gain profile of the active
medium. Some of these media have a very broad gain
profile, such as the Ti:Al2O3 (titanium-sapphire) laser
(Fig. 8.33). The reason for this broad tuning range is
as follows. The optically pumped excited states relax
in a very short time into a lower level, due to interac-
tions with the vibrating atoms of the host crystal. This
level represents the upper laser level. The optical transi-
tions from this level (Fig. 8.34) can terminate on many
“vibronic levels” within a low-lying electronic state,
corresponding to vibrations of the host crystal Al2O3

(phonons). These phonons relax very fast into lower le-
vels, thus repopulating the initial state from which the
pump process starts.

Oscillator AmplifierM1 M2

R 1= R 1<

Pumplight Pumplight

Optical
isolator

Fig. 8.32. Amplification of the laser output power by an optical
amplifier
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Fig. 8.33. Tuning ranges of some solid-state lasers (cw
operation: black, pulsed operation red)
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Fig. 8.34. Level scheme of vibronic solid-state lasers

Another important class of tunable solid-state lasers
are color-center lasers, which consist of alkali-halide
crystals (e. g., NaCl or KBr), which are transparent in
the visible. If defects (a missing negative halide ion)
are produced in such a crystal by X-ray irradiation, the
vacancy spot acts as a potential well for the remaining
electron (Fig. 8.35a). The energy levels of this elec-
tron can be excited by absorption of visible photons,
thus making the crystal appear colored. Therefore these
vacancies are called color centers.

When the electron is excited, the forces on the sur-
rounding ions change. This changes their arrangements
around the color center and the energy of the initially
excited states |1〉 decreases to level |k〉. (Fig. 8.35b),
which acts as an upper laser level. Similarly to vibronic
lasers, the laser emission terminates on many vibronic
levels |i〉 which relax into the initial level |0〉.

In Fig. 8.35c the tuning ranges of different color
center lasers are illustrated.

8.4.2 Semiconductor Lasers

The active medium of semiconductor lasers (often cal-
led diode lasers) is a p-n semiconductor diode. An
electric current is sent in the forward direction through
the diode, which transports electrons from the n-into the
p-section and holes from the p- into the n-section. At
the n-p-junction the electrons and holes can recombine
(i. e., the electrons fall from an energetically higher state
in the conduction band into a lower hole state in the va-
lence band) and may emit their recombination energy in
the form of electromagnetic radiation (Fig. 8.36). The
emitted radiation can be amplified when passing along
the p-n-junction (stimulated recombination). Since the
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Fig. 8.35a–c. Color-center lasers. (a) Schematic illustration
of defects in the ground state and in the relaxed upper state
(b) Level scheme (c) Tuning ranges with different crystals

electron density is very high, the amplification is cor-
respondingly large and a path length through the active
medium of less than 1 mm is sufficient to reach laser
threshold.

The uncoated polished or cleaved end faces of the
semiconductor crystal can serve as resonator mirrors.
The refractive index of semiconductor materials is very
large. For example for the GaAs (gallium-arsenide) la-
ser emitting at λ= 850 nm is n = 3.5. The reflectivity
for vertical incidence is

R =
(

n−1

n+1

)2

≈ 0.30 . (8.29)

Because of the high gain, this reflection is sufficient to
surpass the laser threshold in spite of reflection losses
of 0.7 per one-half roundtrip.

Fig. 8.36a,b. Simplified principle of a semiconductor laser.
(a) Structure of the laser diode (b) Level scheme with valence
and conduction band and radiative recombination of electrons
with holes

Typical output powers of cw semiconductor lasers
are 10−50 mW, when they are pumped by an electric
current of 100−300 mA. Special arrays of many simul-
taneously pumped diodes deliver output powers of more
than 100 W! The plug-in efficiency of radiation output
power to electric input power, defined as the ratio

η= Pout
L /Pin

el ≈ 0.25 ,

reaches 25−30%, which is the highest efficiency of all
lasers developed so far.

Diode lasers are more and more used for pumping
other solid state lasers. Using different semiconduc-
tor materials, wide tuning ranges for the diode laser
wavelengths can be achieved.

8.4.3 Dye lasers

The most important representatives of liquid lasers are
dye lasers with various designs, which can be operated
in a pulsed as well as in a cw mode. The active media are
large dye molecules dissolved in a liquid (e. g., ethylene
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glycol). These molecules have many vibration-rotation
levels in the electronic ground state (singlet S0) and in
excited states (Si or triplet states Ti). The energy le-
vel scheme is schematically depicted in Fig. 8.37. The
strong interaction of the dye molecules with the liquid
solvent results in a broadening of the transitions, which
is larger than the average spacings between the different
rotational-vibrational transitions. Instead of many dis-
crete lines broad absorption and emission bands appear
(Fig. 8.37b).

The pump source (a flashlamp or a pulsed or cw la-
ser) excites the dye molecules from the ground state S0

into many vibration-rotation-levels of the S1 state. Due
to the strong interaction with the solvent, the excited
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Fig. 8.37a,b. Dye laser. (a) Level scheme (b) Structure of
dye molecule rhodamin 590 and absorption fluorescence
spectrum

molecules relax within a short time (10−10−10−12 s)
into the lowest levels |2〉 of the S1 state, from where they
emit fluorescence on radiative transitions into many
vibration-rotation-levels |3〉 of the S0 state. Since these
levels with energies E > kT are not thermally popula-
ted at room temperature, population inversion can be
reached between these levels |2〉 and the levels |3〉, if
the former are sufficiently populated by optical pum-
ping. The active medium of the dye laser is therefore
a four-level system.

Since the absorption starts from the lower levels |1〉
and reaches higher levels in S1 while the emission
starts from the lowest levels |2〉 in S1 and terminates
on the higher levels |3〉 in S0, the emission spectrum
is red-shifted towards longer wavelengths against the
absorption spectrum (Fig. 8.37b).

The dye laser can oscillate on those transitions
where the threshold is reached. From the broad emis-
sion line profile a specific wavelength can be selected
by wavelength-selecting elements inside the laser reso-
nator. Tuning the transmission peaks of these elements
results in a corresponding tuning of the laser wave-
length. In Fig. 8.38 the tuning ranges for different dyes
are shown. This figure illustrates that with different
dyes the whole spectral range from 1 µm down to about
400 nm can be covered.

In Fig. 8.39 the experimental design of a flashlamp-
pumped dye laser is shown. It is similar to that of the
ruby laser in Fig. 8.10, but the solid rod is replaced
by a glas tube through which the dye solution is pum-
ped, producing a steady flow of dye molecules through
the region pumped by the flashlamp. Because of the
broad gain profile a prism is placed inside the reso-
nator in order to select the wanted wavelength. Only
that wavelength λ can oscillate, for which the laser
beam hits the end mirror M2 vertically. All other wa-
velengths are reflected back under an angle inclined
against the resonator axis and do not reach the gain
medium again. Wavelength tuning is accomplished by
tilting the mirror M2.

In Fig. 8.40 the arrangement is shown for a dye laser,
pumped by another pulsed laser (e. g., a nitrogen-laser
or an excimer laser (see below)). The pump beam is
focused by a cylindrical lens into the dye cell, forming
a line focus where inversion is achieved. The narrow dye
laser beam is enlarged by telescope optics and falls onto
an optical Littrow grating, where the first order diffrac-
tion is reflected back into the incident direction. This
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can be realized with a grating with groove distance d, if
the incidence angle α is equal to the diffraction angle β,
which gives the grating equation

m ·λ= d(sinα+ sinβ)= 2d · sinα (8.30)

with m = 1 .

The spectral resolution of the grating

λ/∆λ= m · N (8.31)

is proportional to the number N of illuminated grooves
and the diffraction order m. Therefore it is necessary to
enlarge the dye laser beam to cover a large number of
grooves N . Tilting the grating results in a continuous
tuning of the laser wavelength.

Littrow
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Beam expanding
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lens

Dye cell
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M

λ   + ∆λD
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Fig. 8.40. Excimer-laser-pumped dye laser

Since the spectral width ∆ν of pulsed lasers with
pulse duration ∆t is principally limited by the Fou-
rier limitation ∆ν = 1/∆t, cw lasers are demanded for
really high resolution in the MHz range. In Fig. 8.41
a commercial version of such a single mode cw dye
laser is shown.

The active medium is a thin (≈ 0.5 mm) liquid jet
of the dye solution, which is pumped by an argon laser
beam, focused by a spherical mirror into the dye jet. Dif-
ferently from the previously discussed resonators, four
mirrors form a ring-resonator, where no standing laser
wave is produced but a wave running only in one direc-
tion. This has the advantage that no nodes are present as
in a standing wave and the whole inversion of the active
medium can contribute to the laser amplification. In or-
der to avoid laser waves in both directions the losses for
one direction must be higher than for the other direction.
This can be achieved with an optical diode (unidirec-
tional device), consisting of a birefringent crystal and
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Fig. 8.41. Commercial version of a single-mode cw ring dye laser (Spectra-Physics)

a Faraday polarization rotator, which turns the birefrin-
gent rotation back to the input polarization for the wave
incident in one direction, but increases the rotation for
the other direction. Waves with the wrong polarization
suffer large losses at the many Brewster surfaces in the
resonator and therefore do not reach the threshold.

Wavelength selection is achieved with a birefringent
filter and two Fabry–Perot-etalons with different thick-
nesses t. If the transmission peaks of all these elements
are tuned to the same wavelength λ, the laser will oscil-
late at this wavelength as a single mode laser. The laser
wavelength can be continuously tuned, if all elements
and the resonator length are tuned synchronously. This
can be realized with special feedback control systems.
For details of these devices see [8.10].

8.4.4 Gas Lasers

Nearly all gas lasers use gas discharges as active me-
dium. Besides the He-Ne laser already discussed in
Sect. 8.1.2 the most important gas lasers are compi-
led in Table 8.2. Here, we will only briefly discuss the
physical principles of their operation.

The argon laser oscillates on transitions between
different excited levels of argon ions Ar+. It there-
fore needs a high current discharge (5−50 A with
70−700 A/cm2 current density), where the degree of
ionization is high. The excitation of the upper laser
levels occurs in two steps:

Ar+ e− → Ar++2e− (8.32a)

Ar++ e− →Ar+∗(4p, 4s)+ e− . (8.32b)

In a capillary of ceramic (length ≈ 1 m, diameter
≈ 3 mm) current densities of more than 700 A/cm2 are
reached at a total discharge current of 50 A. The gas
discharge is confined by a longitudinal magnetic field
in order to prevent the ions to reach the wall of the ca-
pillary where they could damage it by sputtering. The
ceramic tube is cooled by a water flow between the
tube and an outer cylinder on which the electric wires
for the magnetic field are wound. A heated helical ca-
thode supplies the large electron current necessary to
maintain the discharge (Fig. 8.42). An elegant techni-
cal solution for the transfer of heat (≈ 20−30 KW) to
the cooling water is shown in Fig. 8.42b. The discharge
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Table 8.2. Characteristic data of some important types of gas lasers

Laser type Laser wavelengths Output power

He-Ne-Laser about 10 transitions 0.1−100 mW
with λ= 0.54−3.39 µm

Argon laser about 20 transitions 1 W–1 kW
with λ= 0.35−0.53 µm

CO2-He-N2-laser about 200 transitions cw: 1 W−10 kW
with λ= 9.5−10.3 µm pulsed: ≤ 1 MW

CO-laser about 300 transitions cw: several watts
λ= 4.5−6 µm

Excimer-laser XeCl: 308 nm Pulse energies
KrF: 248 nm 1−400 mJ/pulse
ArF: 193 nm
H2: 150 µm repet. rate: ≤ 200 Hz

Chemical lasers HF, DF: 2−3 µm several kW
and 10−20 µm

Far infrared several hundred transitions pulsed: mW–W
lasers pumped with λ= 50−350 µm
by CO2-lasers
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Fig. 8.42a,b. Argon ion laser. (a) Experimental setup (b) De-
tails of the discharge path through holes drilled into tungsten
discs and the heat transfer to the water-cooled envelope

runs through small holes (3 mm diameter) in tungsten
discs, which are heated by the dissipated power to tem-
peratures up to 1000 K. These hot discs transfer their
energy by radiation to the wall of a ceramic tube with
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Fig. 8.43. (a) Laser line selection on a specific transition in
argon. (b) Level scheme

about 40 mm diameter, which is again cooled by wa-
ter. The larger surface of this tube facilitates the heat
transfer.

Since several upper levels in the Ar+ ions are
excited, the laser can reach oscillation threshold for
several transitions and therefore oscillates on several
wavelengths. A specific wavelength can be selected by
a prism inside the resonator (Fig. 8.43). By tilting the
mirror M2 the desired wavelength can be chosen.
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The efficiency of the argon laser

η= PL/Pelectr ≈ 0.1%

is very low. In order to produce 1 W laser output power,
more than 10 kW electrical input power are necessary.
Most of the power (99.9%), put into the discharge,
is converted into heat transferred to the walls of the
discharge and has to be taken away by the cooling water.

The CO2 laser has the highest efficiency of all gas
lasers (≈ 10−20%) and for cw operation the highest
output power. The active medium is a gas discharge
in a mixture of He, N2 and CO2. By electron im-
pact in the discharge excited vibrational levels in the
electronic ground states of N2 and CO2 are populated
(Fig. 8.44). The vibrational levels v= 1 in the N2 mole-
cule and (ν1, ν2, ν3)= (0001) in the CO2 molecule (see
Sect. 10.4) are near-resonant and energy transfer from
the N2 molecule to the CO2 molecule becomes very
efficient. This populates the (0001) level in CO2 prefe-
rentially, creates inversion between the (0001) and the
(0200) levels, and allows laser oscillations on many ro-
tational transitions between these two vibrational states
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Fig. 8.44. (a) Level scheme and the three normal vibrational
modes of the CO2 molecule. (b) CO2 laser with a Littrow-
grating for line selection

in the wavelength range 9.6−10.6 µm. A single line
can be selected by a Littrow-grating, forming one of the
resonator end mirrors.

Note:

The linear CO2 molecule has three normal modes of vi-
bration, labeled ν1, ν2 and ν3, and depicted in the upper
part of Fig. 8.44a (see also Sect. 10.3). The vibratio-
nal state of the molecule is described by the number of
vibrational quanta in these modes. A state with 1 quan-
tum in ν1, 2 quanta in ν2 and 0 quanta in ν3 is labeled
as (120). The bending vibrational mode is twofold de-
generate and can have a vibrational angular momentum
along the CO2 axis. The number of quanta nh of this
vibrational angular momentum is stated as an upper in-
dex to the vibrational ν2 quanta. The upper laser level
(0001) has zero vibrational angular momentum and 1
vibrational quantum in the ν3 mode.

A powerful gas laser in the UV is the excimer la-
ser, where specific diatomic molecules, called excimers,
form the active medium. These excimers (excited di-
mers), are stable in an electronically excited state but
unstable in their ground state (Fig. 8.45). Examples are
the noble gas halides, such as XeCL, KrCL or ArF. If the
stable upper state AB∗ of the excimer AB is populated,
(e. g., by electron excitation of the atom A and recom-
bination A∗ +B → (AB∗), inversion is automatically
produced because the lower state is always comple-
tely emptied by fast dissociation on a time scale of
10−13 s, if it is populated by fluorescence from the upper
level.
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Excimers are therefore ideal candidates for an active
laser medium. They have the additional advantage that
the emission from the bound upper level terminates on
a repulsive potential curve on the dissociative ground
state and therefore forms a broad emission continuum.
This results in a broad gain profile and the wavelength
of the excimer laser can be tuned over a relatively large
range.

8.5 Nonlinear Optics

The optical frequency of lasers can be doubled in non-
linear optical crystals, thus considerably extending the
wavelength range where coherent radiation can be ge-
nerated. In this section we will briefly discuss the
physical principles of optical frequency doubling or
mixing under the heading nonlinear optics.

When an optical wave passes through a crystal, it
induces the atomic electrons to forced oscillations. For
sufficiently small electric field amplitudes E of the wave
the elongations of the oscillating electrons are small and
the restoring forces are proportional to the elongation
(linear range). The induced dipole moments p = α · E
are proportional to the field amplitude and the com-
ponents Pi of the dielectric polarization of the medium
induced by the light wave

Pi = ε0

∑
j

χij E j (i, j = x, y, z) (8.33)

are linearly dependent on E, where χij are the com-
ponents of the tensor χ of the electric susceptibility.
This is the realm of linear optics.

EXAMPLE

The field amplitude of the sunlight reaching the earth
at λ= 500 nm within a bandwidth of 1 nm is about
E ≈ 3 V/m. On the other side the electric field from the
Coulomb force, binding the electron to the nucleus is,
for a binding energy of 10 eV, about

EB =− 10 V

10−10 m
= 1011 V/m . (8.34)

Therefore, the elongation of the electrons induced by
the sunlight (for example, for the Rayleigh scattering)
is very small compared with its mean distance from
the nucleus and the restoring force within this small
elongation is linear to a good approximation.

For much larger light intensities, as can be realized
with focused beams of lasers, the nonlinear range of
electron elongations can be readily reached. Instead of
(8.33) the dielectric polarization has to be written as the
expansion

Pi = ε0

[∑
j

χ
(1)
ij E j (8.35)

+
∑

j

∑
k

χ
(2)
ijk E j Ek

+
∑

j

∑
k

∑
l

χ
(3)
ijkl E j Ek El + . . .

]
where χ(n) is the nth order susceptibility, which is re-
presented by a tensor of rank (n+1). The quantities
χ(n) decrease rapidly with increasing n. However, for
sufficiently high field amplitudes E the higher order
terms in (8.35) can be no longer neglected. They form
the basis of nonlinear optical phenomena.

When a monochromatic light wave

E = E0 cos(ωt− kz) (8.36)

passes through the medium, the frequency spectrum of
the induced polarization P also contains (because of
the higher powers n of the field amplitudes En), be-
sides the fundamental frequency ω, higher harmonics
mω (m = 2, 3, 4 . . . ). This implies: The induced oscil-
lating dipoles emit radiation not only on the frequencyω
(Rayleigh scattering), but also on higher harmonics
(Fig. 8.46). The amplitudes A(mω) of these emitted wa-
ves depends on the magnitude of the coefficients χ(n)

2ω
ω 2ω

2ω3ω

z

)kzt(i
0 eEE −ω⋅=

Fig. 8.46. Schematic illustration of the generation of optical
harmonies under the influence of a strong electromagnetic
wave
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and in a nonlinear way on the amplitude E0 of the
incident light wave.

8.5.1 Optical Frequency Doubling

If the light wave (8.36) passes through an isotropic
medium we obtain from (8.35), for the location z = 0,
the x-component of the dielectric polarization

Px = ε
(
χ(1)xx E0x cosωt+χ(2)xxx E2

0x cos2 ωt+ . . . )
(8.37)

when we neglect all higher order terms χ(n) with
n > 2. Similar equations are obtained for the y- and z-
components. Using the relation cos2 x = 1

2 (1+ cos 2x)
we can write (8.37) as

Px = ε0
( 1

2χ
(2)E2

0x +χ(1)E0x cosωt

+ 1
2χ
(2)E2

0x cos 2ωt
)
. (8.38)

The dielectric polarization contains a constant term
1
2ε0χ

(2)E2
0x , a linear term with frequency ω and the

nonlinear term with 2ω. This means that each of the
atoms hit by the incident wave radiates a scattered wave
that contains the frequency ω (Rayleigh scattering) and
a second harmonic wave with the frequency 2ω.

The amplitude of the second harmonic wave is
proportional to the square of the amplitude of the inci-
dent wave. This means that the intensity I(2ω) is also
proportional to I2(ω).

The microscopic second harmonic waves, emitted
by the different atoms, can only add up to a macroscopic
wave if they are all in phase for all location in the
crystal. Since the phase velocity generally depends on
the frequency (dispersion), special crystals have to be
used in order to match the velocities of the fundamental
and the second harmonic wave.

8.5.2 Phase Matching

When a plane wave (8.36) passes through the crystal,
it generates in each plane z = z0 dipoles with oscilla-
tion phases that depend on the phase of the inducing
fundamental wave at z = z0. In a neighboring plane,
z = z0+∆z, the same phase difference exists between
the incident wave and the induced dipoles.

The waves at frequency ω, radiated by the atoms
in the plane z = z0 reach the next plane z = z0+∆z
after the same time interval as the incident wave. They

therefore superimpose the microscopic waves emitted
from atoms in that plane in phase and add up to twice
their individual amplitude.

This is, however, not true for the second harmonic
waves, because their phase velocity vph(2ω)= c/n(2ω)
differs from that of the incident wave vph(ω)= c/n(ω)
if the refractive index n(2ω) 	= n(ω), which is gene-
rally the case. The second harmonic wave generated by
atoms in the plane z = z0 therefore reaches the plane
z = z0+∆z with another time delay than the incident
wave and a phase difference arises between the mi-
croscopic second harmonic waves generated in the two
planes. After a distance

∆z = (λ/2)/[n(ω)−n(2ω)] (8.39)

the second harmonic wave generated in the plane z = z0

arrives at the plane z+∆z with the opposite phase as
the second harmonic waves generated in this plane and
therefore the two contributions interferes destructively
(Fig. 8.47).

In summary: In isotropic homogeneous media the
second harmonic waves generated in the diffe-
rent planes do not superimpose in phase. Summed
over the whole crystal all phase differences bet-
ween 0 and 2π occur and the total wave remains
very small due to destructive interference of the
different microscopic contributions.

A solution to this dilemma is provided by uniaxial
birefringent crystals, where the incident light wave is

Fundamental wave
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z
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∆z

Fig. 8.47. Phase shift of π between the two harmonic waves
with 2ω, generated at a point z1 and a point z2 = z1+∆z
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Fig. 8.48. Phase matching between fundamental wave with
frequency ω and second harmonics with 2ω in birefringent
optical crystals

split into an ordinary wave for which the refractive in-
dex n = n0 does not depend on the direction, and an
extraordinary wave where n = ne(Θ) depends on the
angle Θ between the optical axis of the crystal and the
propagation direction (Fig. 8.48). At a certain angleΘP,
called the phase matching angle, the ordinary refractive
index n0(ω) for the fundamental wave at frequency ω
equals the extraordinary index ne(2ω) for the second
harmonic wave. In this direction, phase matching is
possible for a selected frequency ω. The condition for
phase matching can be written as

ne(2ω)= n0(ω)⇒ vph(ω)= vph(2ω)

⇒ k(2ω)= 2k(ω) . (8.40)

Fundamental

input
Harmonic

output

Doubling crystal

X
M1 M2

PZT

P

Fig. 8.49. Low-loss ring resonator with
astigmatic compensation and wide tuning
range for optical frequency doubling

If the angle Θ is changed, phase matching is achieved
for another frequency ω, i. e., another wavelength λ.
Therefore the phase matched wavelength can be tu-
ned by tilting the crystal. All microscopic secondary
waves at 2ω emitted into the direction Θ from the di-
poles induced by the incident fundamental wave are in
phase with the fundamental wave along the whole path
through the crystal. Now a macroscopic second harmo-
nic wave can build up, traveling in the same direction
as the fundamental wave.

For instance, the red ruby laser emission at
λ = 690 nm is partly converted into UV light
at λ = 345 nm in a properly phase-matched KDP
(potassium-dihydrogen phosphate) crystal. With suf-
ficiently large nonlinear coefficients χ(2) of the
doubling crystal and with pulsed incident lasers
of high peak powers conversion efficiencies up to
η= P(2ω)/P(ω)= 40% can be achieved.

With cw lasers the output power is much less
and therefore the conversion efficiency η= χ(2) I(ω)
is smaller. One can either focus the laser beam onto the
crystal to increase I(ω) at a given power P(ω), or the
doubling crystal is placed inside an enhancement reso-
nator with highly reflecting mirrors (Fig. 8.49), where
the power of the fundamental wave is enhanced by a fac-
tor up to 100. With this technique a UV power of more
than 50 mW can be achieved for an input power of
500 mW.

8.5.3 Optical Frequency Mixing

When two light waves

E1 = E01êx cos(ω1t−k1r)

E2 = E02êx cos(ω2t−k2r)

are superimposed in a nonlinear optical medium, the
total electric field amplitude E = E1+ E2 induces
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a polarization with a nonlinear contribution

P(2)(ω)= ε0χ
(2)[E2

01 cos2 ω1t+ E2
02 cos2 ω2t

+2E01 E02 cosω1t · cosω2t
]

= 1
2ε0χ

(2)[ (E2
01+ E2

02

)
(8.41)

+ (E2
01 cos 2ω1t+ E2

02 cos 2ω2t
)

+2E01 E02(cos(ω1+ω2)t

+ cos(ω1−ω2)t)
]
.

Besides the second harmonics at frequencies 2ω1

and 2ω2 also waves are generated with the sum fre-
quency ω1+ω2 and the difference frequency ω1−ω2,
if the phase matching condition can be properly chosen
for each of these different contributions. For exam-
ple, the phase-matching condition for the macroscopic
generation of the sum frequency ω3 = ω1+ω2 is

k(ω1+ω2)= k1(ω1)+k2(ω2)⇒ (8.42a)

n2ω3 = n1ω1+n2ω2 with ni = n(ωi) . (8.42b)

This condition is generally more readily fulfilled than
that for the second harmonic generation, because the
directions of the two incident waves (and therefore their
wave vectors) can be freely chosen within certain limits,
which imposes less restrictions to the selection of the
nonlinear crystal.

The possibility of optical frequency mixing has
greatly increased the spectral ranges covered by intense
coherent light sources. With difference-frequency gene-
ration, using two visible lasers, the mid-infrared region
can be covered, while sum-frequency generation gives
access to the UV range down to λ= 200 nm. The spec-
tral limitations are given by the spectral regions where
the absorption of the nonlinear crystal becomes large.

8.6 Generation of Short Laser Pulses

The investigation of fast processes induced by the ab-
sorption of photons, demand a high time resolution of
the detection technique. Examples for such fast proces-
ses are the decay of excited states with a short lifetime,
the dissociation of molecules or the rearrangement of
molecular structure after excitation into higher energy
states. This latter process plays an important role in the
visual process, where the primarily excited rhodopsin
molecules in the retina of the eye undergo many energy

transfer process before the excitation energy is trans-
ferred into an electrical signal reaching our brain. Such
processes could only be studied in detail after the de-
velopment of ultrashort laser pulses with pulse widths
down to about five femtoseconds (1 fs= 10−15 s).

In this section we will briefly discuss some expe-
rimental techniques for the generation of short laser
pulses.

8.6.1 Q-Switched Lasers

The inversion threshold for obtaining laser oscillation
depends on the total losses (see Sect. 8.1.1), which can
be expressed by the quality factor (Q-factor) of the laser
resonator.

The Q-value of the kth resonator mode is defined as

Qk =− 2πνWk

dWk/dt
=+ ω

γk
TR (8.43)

and can be expressed by the total loss factor γk of this
mode and the roundtrip time TR = 2d/c.

The Q-switching technique uses the following trick:
During the pump process the Q-value of the laser re-
sonator is kept so low (i. e., the losses are so high)
that the laser threshold is not reached in spite of the
growing inversion. At a selected time t = ts, Q is sud-
denly switched to a maximum value (Fig. 8.50). This
prevents laser oscillation for t< ts and allows the po-
pulation inversion to reach a large value, because it is
not depleted by induced emission. When the losses are
suddenly switched to a minimum value at t = ts the in-
version is way above threshold and the amplification of
the spontaneous emission starting the photon avalanche
is accordingly high. This leads to a fast rising “giant

Pump power

Population
inversion

N t∆ ( )

PL

Threshold

P , P , NP L ∆

tS
t

Losses γ

Fig. 8.50. Pump power PP(t), laser output power PL(t), and
cavity losses γ(t) for a Q-switched laser
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pulse”, which depletes the inversion within a short time
and therefore terminates itself.

In Fig. 8.51 two possible experimental realizations
of Q-switched lasers are shown. A fast spinning resona-
tor mirror spoils the Q-value for all times, except for the
short time span where the mirror surface is perpendicu-
lar to the resonator axis. The light from a light-emitting
diode is reflected by the backside of the spinning mir-
ror onto a photodetector. Its output signal triggers the
discharge of the flashlamp, pumping the laser. An elec-
tronic delay of the trigger signal can select the time
delay between trigger time and vertical position of the
spinning mirror.

The optimum time delay depends on the duration of
the pump pulse and on the lifetime τ of the upper laser
level. The time delay must be smaller than the lifetime τ ,
because otherwise one looses too much of the upper
state population necessary for the amplification of the
giant pulse.

Another more commonly employed technique uses
a Pockels cell inside the laser resonator for Q-switching.
A Pockels cell consists of a birefringent crystal that
changes its birefringence with an applied electric field.
If the crystal is biased in such a way that it rotates
the plane of polarization by 45◦ for one transit, the light

Fig. 8.51a,b. Possible realizations of cavity Q-switching
(a) With a rotating resonator mirror (b) With an electro-optic
switch (Pockels cell) inside the laser resonator

transmitting the crystal a second time after reflection by
mirror M2 has its plane of polarization turned by 90◦.
A polarization beam splitter then reflects the beam out
of the laser resonator (Fig. 8.51b). At the Q-switching
time ts, a high voltage pulse is suddenly applied to the
crystal that changes the birefringence and brings the
rotation angle per transit to 90◦ and for the reflected
beam to 180◦. The beam is now transmitted by the
polarization beam splitter and reaches the laser rod.

These techniques generate giant laser pulses with
durations of a few ns and peak powers of 105−109 W,
depending on the laser type.

8.6.2 Mode-Locking of Lasers

Much shorter pulses can be achieved with the mode-
locking technique, which is based on the following
principle.

If a light wave with optical frequency ν0 pas-
ses through an optical modulator with a modulation
frequency f (e. g., a Pockels cell or an ultrasonic modu-
lator), the transmitted amplitude intensity is modulated
according to

It = I0[1+a cos(2π ft)] cos2(2πν0t) . (8.44)

The degree of modulation a< 1 depends on the voltage
applied to the modulation cell. The Fourier analysis of
such a modulated light wave gives a frequency spectrum
that consists of the carrier frequency ν0 and sidebands
at frequencies ν0±n · f .

Inserting the modulator inside the laser resonator
(Fig. 8.52) and choosing the modulation frequency f to
be equal to the frequency separation

δν = c/2d = f

of the longitudinal resonator modes, makes all side-
bands resonant with resonator modes. This means that
the sidebands can participate in laser oscillation as long
as their frequencies lie within the gain profile of the ac-
tive medium. This leads to a coupling of all resonator
modes within the gain profile because the phases of the
sidebands are coupled to that of the carrier by the phase
of the modulation.

If the modulator has the time dependent transmis-
sion

T = T0
[
1−a sin2(Ω/2)t

]
(8.45)



312 8. Lasers

M1 M2

Ultrasonic
modulator

Laser

Piezo

a)

d

b) c)

ν −0 f ν0 ν +0 f

IL

f f

t

IL

1/∆ν

T 2d /c=

ν

f c
d= 2

Fig. 8.52a–c. Mode-locking of lasers. (a) Experimental setup
with an ultrasonic modulator (b) Laser frequency ν0 and the
two neighboring side-bands (c) Laser output pulses with width
∆t ≈ 1/∆ν and repetition frequency f = 1/T = c/2d

with the modulation frequency f =Ω/2π and the mo-
dulation amplitude a< 1, the amplitude ot the kth mode
becomes

Ak(t)= TAki cosωkt (8.46)

= T0 Ak0
[
1−a sin2(Ω/2)t

]
cosωkt .

This can be written as

Ak(t)= T0 Ak0

[(
1− a

2

)
cosωkt (8.47)

+ a

4

[
cos(ωk +Ω)t+ cos(ωk −Ω)t

]]
.

The total amplitude of N = 2m+1 coupled modes is
then

A(t)=
+m∑

k=−m

Ak cos(ωk + k ·Ω)t

For equal amplitudes Ak = A0 the total time-dependent
intensity becomes

I(t)∝ A2
0

sin2
(

1
2 NΩt

)
sin2

(
1
2Ωt

) cos2 ω0t . (8.48)

For cw lasers the amplitude A0 is constant in time
and (8.48) represents an equidistant sequence of pulses
(Fig. 8.53) with a pulse separation

T = 2d

c
= 1

∆ν
, (8.49)

∆ δνT = 1/
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Fig. 8.53. Mode-locked pulses, where N modes have been
locked. Note the different ordinate scales

which equals the roundtrip time through the laser
resonator. The pulse width

∆T = 2π

(2m+1)/Ω
= 2π

NΩ
= 1

δν
(8.50)

is determined by the number N of phase locked mo-
des within the gain profile with spectral width δν
and is therefore inversely proportional to the spectral
bandwidth δν of the gain profile above threshold.

The peak power of the pulses is proportional to N2.
The pulse energy is proportional to N2∆T ∝ N . In
between two succesive main pulses (N −2) small ma-
xima appear, which decrease in intensity as N increases
(Fig. 8.53).

Contrary to a normal multimode laser that can os-
cillate simultaneously on many modes with, however,
random phases, the mode-locked laser oscillates on
many phase-coupled modes, because the modulator en-
forces a definite phase relation between the oscillating
modes.

EXAMPLES

1. The gain profile of the He-Ne laser has a width
of about ∆ν = 2 GHz. Mode-locking therefore
achieves pulses with a minimum duration of
∆τ = 500 ps.
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2. The argon laser has a larger spectral width ∆ν =
6 GHz of its gain profile and allows mode-locked
pulses with widths down to ∆τ = 170 ps.

3. The dye laser has a very large spectral band-
width of about∆ν = 3×1013 s−1. Therefore, pulses
down to ∆τ = 3×10−14 s should be possible. The
experimental realization only reaches ∆τ = 3×
10−12 s = 3 ps. This corresponds to the transit time
∆t =∆x/c of the light through the modulator with
length ∆x.

Not only cw lasers, but also pulsed lasers, can be
mode-locked. The pulse amplitude is no longer constant
but follows the time profile of the gain. In Fig. 8.54 the
pulse sequence within one pulse envelope of a mode-
locked neodymium-glass laser is shown for illustration.

The shortest laser pulses, obtained so far are genera-
ted by a nonlinear effect, called Kerr lens mode-locking.
Its basic principle is illustrated in Fig. 8.55.

For sufficiently high intensities, the refractive index
is affected by the nonlinear interaction of the light wave
with the medium. It can be written as a sum

n(ω, I)= n0(ω)+n2(ω) · I (8.51)

where n0(ω) is the normal refractive index and n2(ω)�
n0(ω). The intensity-dependent change of the refractive
index is caused by the nonlinear polarization of the
atomic electron shells induced by the electric field of

I Laser intensity

before after

Aperture

Aperture

Self-focusing

Active medium n(r)

Gaussian
profile

Time Time Fig. 8.55. Kerr-lens mode-locking

Fig. 8.54. Periodic pulse sequence from a pulsed mode-locked
Nd:glass laser (W. Rudolf, F.B. Physik, Univ. Kaiserslautern)

the optical wave and is therefore called the optical Kerr
effect.

When a laser beam with a Gaussian radial intensity
profile I(r) passes through a medium, the refractive
index shows a radial gradient with a maximum value of
n at the central axis at r = 0. The medium then acts like
a lens and leads to a focusing of the incident laser beam,
where the focal length depends on the laser intensity.

When a laser pulse with the time profile I(t) passes
through the medium, the central part of the pulse around
its maximum generates the largest gradient of n(r) and
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therefore the shortest focal length fmin of the Kerr lens.
If an aperture is placed at a distance fmin behind the
Kerr lens, only that part of the pulse I(t) around its ma-
ximum at t = t0 is fully transmitted through the aperture.
All other parts before and after the maximum produce
a longer focal length and therefore have a larger spot
size at the aperture and only the central part of the radial
beam profile is transmitted through the aperture. These
parts of the pulse therefore suffer larger losses and are
attenuated. This happens for every roundtrip inside the
resonator and leads to a shortening of the pulse duration.

EXAMPLE

For sapphire Al2O3 n2 = 3×10−16 cm2/W. For the in-
tensity I = 1014 W/cm2 the refractive index changes by
∆n = 3×10−2 n0 with n0 = 1.76. For a laser pulse with
a wavelength λ= 1 µm this leads to an additional phase
shift of the optical phase by ∆ϕ = (2π/λ)∆n = 2π×
300 ·1.76 after a pathlength of 1 cm through the Kerr
lens material, which results in a radius of curvature R =
4 cm of the wavefront of the light wave. For a Gaussian
beam profile with peak intensity I(0)= 1014 W/cm2

which would be a plane wave without the Kerr lens, the
focal length of the Kerr lens is then f = 4 cm.

This Kerr lens mode-locking has been successfully
applied to the generation of ultrashort light pulses from
a Ti:sapphire laser, which has a very broad gain profile
and is therefore well suited to allow such short pulses. In
Fig. 8.56 a possible experimental realization is shown.
The Kerr medium is the Ti:sapphire crystal, which acts
simultaneously as active laser medium, and the limi-
ting aperture is placed in front of mirror M4. The Kerr
lens changes the focal length and therefore the imaging

M1
Ti:S

M2
Pump

OC

Aperture

M4
M3

Fig. 8.56. Experimental setup for a Kerr-lens mode-locked
Ti:sapphire laser (OC = optical compensator)

Fig. 8.57. Schematic representation of an ultrashort light pulse
containing only three optical cycles of the light intensity. The
envelope has a half-width of∆τ = 6 fs and a spatial extension
∆z = c×∆τ ≈ 2 µm

characteristics of the laser resonator in such a way that
for the maximum of the laser pulse the focus lies in the
center of the aperture.

With such a device, pulses down to 4 fs have been
achieved. For these short pulses the spectral width is
very large and any dispersion effects in the laser resona-
tor must be carefully compensated for. For instance, the
dielectric mirrors with many reflecting layers generally
have a wavelength- dependent phase shift, which would
lead to a broadening of the pulse. Therefore special
dispersion-compensated mirrors have been designed
that avoid this problem.

For an optical wave at λ = 600 nm (ν = 5×
1014 s−1), the optical cycle time is Topt = 1/ν = 2 fs.
A light pulse of 6 fs half-width therefore contains only
three optical cycles (Fig. 8.57).

8.6.3 Optical Pulse Compression

When a short optical pulse is sent through an optical fi-
ber with a core diameter of 5 µm, the intensity becomes
so high that the refractive index

n(ω)= n0(ω)+n2× I(t)

is changed by the nonlinear interaction of the medium
with the laser pulse. It becomes time-dependent. The
nonlinear term n2 can be positive as well as negative,
depending on the material and the laser wavelength.

A short pulse of duration ∆T can be described by
the wave packet

I(t)=
+∆ω/2∫

−∆ω/2
I(ω)ei(ωt−kz) dω . (8.52)
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This represents a superposition of many fre-
quency components within the frequency interval
∆ν = 1/∆T =∆ω/2π where I(ω) gives the envelope
of the spectral profile.

The linear part n0(ω) of the refractive index causes,
for normal dispersion (dn0/dλ < 0), a larger phase ve-
locity for the red components in the pulse than for the
blue components. The red components will therefore
be at the leading edge and the blue components at the
trailing edge of the pulse. This results in spatial- and
time-broadening of the pulse.

The nonlinear part n2 I(t) causes a frequency shift
dependent on the intensity. This can be seen as follows.
The phase of the wave E = E0 cos(ω0t− kz)

ϕ = ω0t− kz = ω0t−ωnz/c (8.53)

= ω0 · (t−n0z/c)− A · I(t) ; A = n2ωz/c

depends on I(t). Since the frequency

ω= dϕ/dt = ω0− A · dI/dt (8.54)

is the time derivative of the phase ϕ, it is evident from
(8.53) that with A> 0 the frequency at the leading edge
of the pulse (dI/dt> 0) is decreased and at the trai-
ling edge (dI/dt< 0) is increased. This phenomenon
is called a chirp of the optical pulse, where the optical
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Fig. 8.58a,b. Spatial and spectral broadening of a pulse in a medium with normal linear (a) and nonlinear (b) refractive index
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Fig. 8.59. Optical pulse compression by a grating pair

frequency changes from small to high frequencies over
the pulse profile I(t) (Fig. 8.58).

In summary, when passing through an optical
medium the optical pulse I(t) becomes broader,
caused by the dispersion n0(ω), and its spectral
profile I(ω) becomes broader due to the chirp
induced by the nonlinear part n2 · I(t) of the
refractive index.

When such a spectrally broadened pulse is sent
through a pair of parallel optical gratings (Fig. 8.59),
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Fig. 8.60. Experimental arrangement for the generation of femtosecond pulses by self-phase modulation with subsequent pulse
compression by a grating pair [8.11]

the red components of the pulse are diffracted into ano-
ther angle β than the blue ones. From Fig. 8.59 one can
infer the path difference S between the plane phase front
of the incident wave at point A and the phase plane at
point B as

S = S1+ S2 = D

cosβ
+ D sin γ

cosβ
, (8.55)

where D is the distance between the two parallel
gratings. From the grating equation

d(sinα− sinβ)= λ (8.56)

for a grating with groove separation α we obtain, after
some calculations,

dS

dλ
= dS

dβ
· dβ

dλ
= −D ·λ

d2[1−λ/d− sin2 α]3/2 . (8.57)
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Fig. 8.61. Optical interferometry with
translation-retroreflecting prism and se-
cond harmonic generation for measuring
the width of ultrashort pulses

This shows that the optical path length through the
grating pair increases with increasing wavelength.
Choosing the grating separation D sufficiently large,
the broadening of the pulse due to the linear dispersion
in the optical fiber can be overcompensated for by the
grating pair and leads to a shortening of the duration∆T
of the pulse I(t). The experimental arrangement for the
compression of optical pulses after they pass through
the fiber is shown in Fig. 8.60.

8.6.4 Measurements of Ultrashort Optical Pulses

Since the time resolution even for fast optical detec-
tors is limited to about 100 ps (except for the streak
camera, which reaches 1 ps) the measurement of such
short pulses can no longer be performed with conven-
tional devices, but demands new ideas. One method
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Fig. 8.62. Measured femtosecond pulse with only five optical
periods of T = 2.5 fs within the full half-width of the envelope

is based on optical interferometry (Fig. 8.61). The la-
ser beam is split into two parts that are recombined
after having traveled along two different paths with
slightly different path lengths. The superposition of the
two parts with variable time delay τ and intensities
I1(t)= |A1(t)|2 and I2(t+ τ)= |A2(t+ τ)|2 gives the
total intensity

I(τ)= |A1(t)+ A2(t+ τ)| 2 (8.58)

= I1(t)+ I2(t)+2A1(t) · A2(t+ τ) ,

which depends on the relative phase between the two
optical waves, i. e., on the time delay τ . Although the
detector cannot follow the fast optical waves, it mea-
sures the time dependent interference pattern I(τ), if
the change of the time delay τ is sufficiently slow. If
the spectral width of the short pulse is large, it con-
tains a superposition of many monochromatic carrier
waves with a nearly continuous frequency spectrum. In
this case there will be no clear interference pattern and
the detector would measure the sum of the two inten-
sities I1+ I2, independent on their separation. Here the
frequency-doubling of the fundamental wavelength in
a nonlinear crystal is a good solution. The intensity

I(2ω)∝ |I1(t)+ I2(t+ τ)| 2

= I
2
1+ I

2
2+2I1(t) · I2(t+ τ)

of the second harmonics does depend on the time de-
lay τ . Even if the time constant of the detector is long
compared to the pulse width and the detector measu-
res the time average of the pulses, it still gives the true
pulse profile I(t).

In Fig. 8.62 an actual experimental result is shown
for a pulse with 7.5 fs duration (half-width at half-
maximum), which shows the optical cycles with 2.5 fs
period, monitored with a detector with a time constant
of about 1 ns.

Some applications of these ultrashort pulses are
discussed in Chap. 12.
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• Laser stands for “Light Amplification by
Stimulated Emission of Radiation”.

• A laser consists essentially of three components:
The energy pump, which produces inversion in
a medium by selective energy transfer into the
medium.
The active medium with a population inversion
for selected transitions where an electromagnetic
wave passing through the active medium is am-
plified instead of attenuated.
The optical resonator, which stores the radiation
power emitted by the active medium in a few re-
sonator modes. In these modes, the number of
photons should be large. This ensures that in these
modes the induced emission is much stronger than
the spontaneous emission.

• Laser oscillation starts at a threshold power deli-
vered by the pump into the active medium, which
depends on the critical inversion and the total los-
ses of the lasing modes. At threshold the losses
are just compensated by the gain of the active
medium.

• The oscillation frequencies of the laser emission
are limited by the spectral range where the active
medium has sufficient gain. Within the gain profile
of the active medium the lasing frequencies are
determined by the eigenresonances of the optical
resonator.

• The divergence of the emitted laser beam depends
on the number of transverse modes participating
in laser oscillation. If only fundamental modes
contribute to laser emission, the laser beam profile

is Gaussian and its divergence is only limited by
diffraction effects.

• Single mode lasers, oscillating on a single funda-
mental mode, can be realized by additional mode
selecting elements inside the laser resonator.

• A synchronous tuning of all frequency-selecting
elements allows the realization of a single mode
laser with a single wavelength tunable across the
spectral gain profile of the active medium.

• The active medium can be a solid, a liquid or
a gas. Broad gain profiles are provided by semi-
conductor materials, by dye solutions, by doped
crystals with color centers and by vibronic solid
state lasers consisting of an insulator, doped by
metal ions.

• For some types of lasers, threshold inversion can
only be achieved with pulsed pumps (e.g., pulsed
Nd:glass lasers or excimer lasers), while most la-
sers can be operated in a continuous wave mode
(cw lasers) as well as in a pulsed mode.

• The time profile of the laser output is limited by
the duration of the pump power above threshold.

• By fast switching of the resonator quality factor,
short laser pulses in the nanosecond range can be
realized (Q-switched lasers).

• Coupling of many lasing resonator modes (mode
locking) results in even shorter pulses down to
about 1 picosecond.

• By pulse compression in optical fibers or by
nonlinear gain manipulation inside the laser ca-
vity (Kerr lens mode locking) femtosecond laser
pulses have been obtained.

S U M M A R Y

1. a) What is the population ratio Ni/Nk for atoms
in a gas for thermal equilibrium at T = 300 K,
if the wavelength of the transition Ei → Ek is
λ= 500 nm and the angular momentum quantum
numbers are Ji = 1 and Jk = 0?
b) What is relative absorption of a monochromatic
light wave per cm path length through a gas, if the
transition probability Aik = 1×108 s−1, the gas
pressure p = 1 mbar and 10−6 of all atoms are in
the lower state Ek of the transition?

c) What is the threshold inversion Nk − Ni ,
if the total losses per roundtrip of 10%
should be compensated for by the gain over
a path length of 20 cm in the active me-
dium?

2. a) Calculate the Doppler-width of the neon line
at λ= 633 nm in a gas discharge with a tempera-
ture of T = 600 K.
b) How many resonator modes TEM0,0,q for
a resonator length of 1 m can oscillate, if the laser

P R O B L E M S
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threshold is at 50% of its maximum value at the
line center?

3. An argon laser with a resonator length d = 1 m,
oscillating at a wavelength λ= 488 nm can be
forced to oscillate on a single mode by inserting
a Fabry-Perot etalon inside its resonator.
a) What is the thickness t of the solid fused quartz
etalon with a refractive index n = 1.5, if only one
etalon transmission maximum should lie within
the Doppler broadened gain profile of the argon
transition at a discharge plasma temperature of
T = 5000 K?
b) What is the reflectivity R of the two coated
planes of the etalon, if the transmission T of the
etalon for the neighboring laser resonator modes
should decrease to T = 1/3 of that for the selected
mode with T = 1 at the maximum of the etalon
transmission?

4. Assume that the two end mirrors of a laser re-
sonator are connected by invar steel rods with
a length d = 1 m and a thermal expansion coeffi-
cient α= 12×10−6 K−1.
a) How much does the laser frequency ν shift for
a temperature change ∆T = 1 K?
b) If the laser wave inside the resonator passes
through 40 cm air at atmospheric pressure, what
is the frequency shift for a pressure change of
10 mbar? c) Is the dependence of the cavity’s geo-
metric length on the pressure change significant?
Give an estimation of this change, using Hooke’s
law, for the invar rods (the elastic modulus of in-
var is E = 107 N/m2, the diameter of the rods is
1 cm).

5. The nearly parallel beam of a laser with wave-
length λ= 10 µm and output power of P = 10 W
has a beam diameter of d = 3 cm. It is focused by
a lens with f = 20 cm.
a) How large is the beam waist w0 in the focal
plane?
b) The intensity distribution in this plane is

I(r)= I0× exp[−(r/w0)
2] .

What is the value of I0?
c) Assume that 10% of the laser power can be
used for evaporating material from a steel sheet
with thickness t = 1 mm placed in the focal plane.
How long will it take for the laser beam to produce
a hole through the steel sheet, if the evaporation
heat is 6×106 J/Kg?

6. A short Fourier-limited laser pulse (∆t = 10 fs)
passes through a medium with refractive in-
dex n = 1.5 and a dispersion of dn/dλ= 4.4×
104 m−1.
a) What is the minimum spectral width of the
pulse?
b) After which path length has the width∆t of the
pulse doubled due to the linear dispersion of the
medium?
c) How large must the intensity be in order to
compensate for the pulse spread caused by the li-
near dispersion if the nonlinear refractive index is
n2 = 10−10 cm2/W?

7. a) What is the quality factor Q of a laser cavity
with mirror separation d = 1 m, mirror reflec-
tivities R1 = R2 = 0.99 at a frequency ν = 5×
1014 s−1, if all other losses (apart from reflection
losses) are 2% per roundtrip?
b) After how much time does the energy stored in
the cavity reduce to 1/e, if at time t = 0 the am-
plification by the active medium suddenly drops
to one?
c) What are the separations∆ν and the half-widths
δν of the longitudinal cavity resonances?

8. Assume the laser oscillation in a cavity mode with
ν = 4.53×1015 s−1 starts with one photon in this
mode. How long does it take until the laser output
power in this mode has reached 1 mW, for a net
gain g per roundtrip of 5%, a resonator length
of d = 1 m and mirror transmissions R1 = 0 and
R2 = 0.02 if
a) the net gain g =−α0 is independent of the
intensity?
b) the gain saturation is essential andα= α0+a×
P with a = 0.4 W−1 m−1 or a = 0.55 W−1 m−1?




