
OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

Due Friday, April 29

1. Absorption and thermal distributions in a 2-level system

Consider a collection of identical two-level atoms in thermal equilibrium. The population distribution
between the two states ψg (the ground state) and ψe (the excited state) is given by the Maxwell-
Boltzmann distribution (as discussed in class, and given by equation 3.6.7 in the ”Laser Physics”
textbook).

(a) With Ng and Ne denoting population densities corresponding to states ψg and ψe, calculate Ne/Ng

for an optical transition of wavelength λ = 500 nm and a temperature of 300 K. (h̄ = 1.1× 10−34 J s,
and kB = 1.4× 10−23 J/K).

(b) At what temperature will Ne be equal to 0.01Ng?

(c) Is there any realistic temperature for which Ne can exceed Ng for this two-level system?

(d) Can a gas of two-level atoms held at any temperature provide more gain than absorption to
a beam of light that passes through the gas? Why or why not?

2. Absorption lineshapes

(a) The HeNe gain profile for the λ = 633 nm transition is known to be Doppler broadened to
δνD ≈ 1500 MHz for T=400K. Calculate the Doppler broadened absorption line width for the 1S-2P
transition in hydrogen assuming you have a gas cell of hydrogen atoms at room temperature.

(b) Calculate the natural absorption line width for the 1S-2P transition in hydrogen and determine
what the line shape for this transition would look like if measured in the gas cell from part (a) (i.e.
Gaussian or Lorentzian?).
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Absorption in a 2-level system

The absorption coefficient a is related to many other concepts in optical physics, such as laser cooling,
the optical dipole force, and of course optical gain via stimulated emission when a population inversion
exists. In this assignment, many terms and definitions are reviewed and some introduced.

In class, we have seen a general expression for the absorption coefficient may be written as:

a = ∆Nσ(ω),

where the population density difference between levels 1 and 2 is given by ∆N = N1−N2 and ω = 2πν.
Since α has units of inverse length, the new variable σ must have units of area per atom. Specifically,
σ is interpreted as the cross-sectional area for an atom-photon interaction. If we think loosely (and
incorrectly) of a photon as a particle propagating through space, then the bigger σ is, the “bigger”
the photon and atom look to each other. For a given photon flux and atomic density, a larger σ will
mean that an absorption event is more likely to occur.

For a homogeneously broadened medium, we have seen that a general expression for the absorption
(or stimulated emission) cross-section can be written as:

σ(ν) =
λ2

8π
A21S(ν) = σo ×

δνrad
δνH

× 1

1 + (∆/δνH)2
,

where S(ν) is the line shape function, ∆ = (ν − νo) is the usual light detuning from the atomic reso-
nance, σ0 = λ2

0/(2π) is the maximum absorption cross-section, and λ0 is the wavelength of the atomic
resonance (λ0 = 2πc/ω0). The full-width at half maximum (FWHM) of this homogeneous Lorentzian
lineshape is given by 2× δνH = 2× (δνo + δνrad) = A21/(2π) + γc/π, where γc is the elastic collision
rate of the atoms. Note that if this were a multilevel atom and level 1 was not the ground state, the
natural line width (which is due to spontaneous emission alone) would more generally be given by
2 × δνrad = (A1 + A2)/2π, where A2 =

∑
A2i and A1 =

∑
A1j are the total radiative decay rates

from each level to all other allowed states. The Einstein A coefficient is given by the usual expression:
A21 = ω3

0℘
2/(3πε0h̄c

3).

3. Saturation. In this problem and the following problems, we will consider the steady-state
absorption coefficient for a strictly two-level atom (e.g. no spontaneous emission from the lower
level) interacting with a monochromatic polarized beam of laser light, and we assume that the gas is
not Doppler-broadened (i.e. homogeneous absorption), that state ψ1 is the ground state, and state
ψ2 is the excited state. We will also assume that collisional broadening is negligible, and therefore
δνH = A21/4π = δνrad for this strictly 2-level system.

(a) Set up the population rate equations for this 2-level system and solve for the steady-state pop-
ulation density for level 2, N ss

2 , in terms of only the spontaneous emission rate A21, the stimulated
transition rate R(I), and the total population density N = N1 +N2.

(b) Using the same procedure, solve for N ss
1 and obtain an expression for the steady-state population

difference ∆N . Recalling that the stimulated transition rate can be written as R(I) = I × (σ/h̄ωo),
show that ∆N can be expressed in the form:

∆N =
∆No

1 + I/Isat
,

where Isat = h̄ω0/(2στ2), τ2 is the natural lifetime of level 2, and ∆No is the initial population dif-
ference with the incident light off (I = 0). Recall that for a 2-level system in thermal equilibrium,
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the resulting thermal distribution is N0
2 /N

0
1 = e−h̄ω0/kBT , so that N0

1 >> N0
2 . Thus in this particular

system N0
1 −N0

2 ≈ N0
1 , which is approximately the total population density N of the gas, with units

of number of atoms per unit volume.

(c) We can now write the absorption coefficient as:

a(ν) =
ao(ν)

1 + I
Isat

where we have defined the small-signal absorption coefficient for this 2-level system as ao(ν) = σ(ν)N .

Show that the absorption coefficient can now be put into the form:

a(ν) = N × σo ×
1

1 + I/Iosat + (∆/δνH)2

where Iosat = h̄ω0/(2σoτ2). Note that Iosat is a constant while Isat (defined above) depends on detuning
from resonance due to σ(ν). We can therefore write:

Isat = Iosat × [1 + (∆/δνH)2]

The meaning of Isat is discussed in class and is hopefully now clear; it is the intensity at which the
initial population difference is reduced to half its value. If ∆ is not zero, a higher intensity is needed to
saturate the transition. Note also that the expression for Isat can vary by an overall factor depending
on the whether one is considering a 2-level system or a different multilevel system (for example, if the
lower level is not the ground state for the atom).

(d) Make a plot of a/(Nσo) vs. I/Iosat for case ∆ = 0. We had previously seen that for a gas of
two-level atoms in thermal equilibrium, a population inversion (N2 > N1) can not be achieved. By
now, you should be convinced that under steady-state conditions, even a high-intensity laser can not
invert a sample of two-level atoms. Thus a gas of two-level atoms is always an absorber.

(e) Finally, show that a can be written in the following form:

a =

(
δνH
δν ′

)2

× ao(νo)

1 + (∆/δν ′)2
,

where δν ′ = δνH
√

1 + I/Iosat is the power broadened line width. On the same graph, make a plot of
a/(Nσo) versus detuning ∆ for I = 0, I = Iosat, and I = 3Iosat.
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4. Photon scattering. In this problem we will consider the same two-level system as in problem
2. In thermal equilibrium, with only blackbody radiation present, at any instant in time the vast
majority of atoms in a gas will reside in the electronic ground state ψ1. In steady-state equilibrium
after near-resonant light has been turned on, each atom will then have a higher probability of being
found in the excited state, due to interaction with the light.

The rate of photon scattering by a gas of atoms (i.e. the absorption and spontaneous emission
of a photon from the beam of light) is an important quantity, and is useful to know in many applica-
tions, such as determining the amount of fluorescence observed as a laser beam passes through a gas
of atoms. This scattering rate per atom (γscat) depends on the steady-state value for atoms in level 2
and the spontaneous emission rate from level 2:

γscat = A2 ×
N ss

2

N
.

(a) Using your result from problem 3(a) for N ss
2 , show that γscat can then be written as

γscat =
A2

2
·
(

s0

1 + s0

)(
1

1 + ∆2/(δν ′H)2

)
,

where s0 = I/Iosat is the on-resonance saturation parameter, and δν ′ = δνH
√

1 + s0.

In an experiment, you might imagine sending a tunable laser beam through a gas of atoms, col-
lecting some of the fluorescence with a lens, and measuring the amount of this scattered light on
a photodiode. As you scan the laser frequency through the atomic resonance, you’ll see a power-
broadened Lorentzian lineshape (as long as Doppler broadening can be neglected) with a full width
at half maximum (FWHM) of 2× δνrad = A2/(2π). The peak scattering rate (when ∆ = 0) is given
by γscat = (A2/2) s0

1+s0
, so the amount of scattered light will increase with I, but will saturate to a

limiting value as I far exceeds Isat.

(b) Calculate σ0 for an atomic transition with a resonance at a wavelength of 780 nm.

(c) Calculate Iosat for an atomic transition with a FWHM linewidth of A2/(2π)= 6 MHz .

(d) Suppose you let a confined gas of atoms interact with a resonant (∆ = 0) laser beam with uniform
intensity I = Isat. Assume that 109 atoms are contained in a very tiny volume, approximately a single
point in space. As the atoms interact with the light, they uniformly scatter photons into all directions
at a rate γscat. A fraction δ of this light is collected by a lens of both diameter and focal length 5 cm,
placed 5 cm away from the fluorescing atoms, and the collected light is focused onto a photodiode. If
the atoms have a FHWM linewidth of 6 MHz, what is the power (in Watts) that is incident on the
photodiode? [Detected Power = (fraction of total scattered light collected) x (energy per photon) x
(number photons scattered per atom per unit time) x (number of atoms in the sample).]
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Population inversion and gain in a 3-level system

When discussing gain rather than absorption, the population difference is defined as

∆N = N2 −N1,

and the gain coefficient is
g(ν) = ∆Nσ(ν).

The saturation of the gain is again due to the change in ∆N that results from stimulated transitions
between levels 1 and 2. It is hopefully now clear from the previous problems that one cannot create
a population inversion in a strictly 2-level system. The expression for ∆N depends on the particular
multilevel system being studied. Most laser systems can be modeled by reducing them to an effective
3 or 4 level laser system. In this problem, we will assume there is no collisional or Doppler broadening.

5. (a) Write the rate equations for a 3-level atomic system as discussed in class, assuming the
usual conditions and notation: (i) the lasing transition is between levels 1 and 2, where level 1 is the
ground level, (ii) pumping is from level 1 to 3 at a rate per atom P , and (iii) instantaneous decay
occurs from level 3 to 2.

(b) Solve the rate equations for steady state population densities N1 and N2. However, do not assume
that field intensities are small. Keep the absorption and stimulated emission rate R(I) = I · σ/(h̄ωo)
in your equations. Be sure N1 and N2 are expressed only in terms of P,R(I), A21, and N , the total
atom number density.

(c) Using your result above, solve for ∆N .

(d) Setting R(I) ∼ 0, solve for ∆No and show that it matches the expression:

∆No = N × P −A21

P +A21

(d) Finally, show that the population difference for a three level laser system can be written:

∆N =
∆No

1 + I/Isat
,

where the saturation intensity is now given by:

Isat =
h̄ω0

2σ
× (A21 + P ).

Note that if P=0, the gain coefficient is negative (absorption) and the saturation intensity is the same
as previously expressed for the two level system.
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