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Experiment 3: Second Harmonic Generation (SHG)  (1 week lab)      
 
In this experiment we produce 0.53 µm (green) light by frequency doubling of a 1.06 µm 
(infrared) diode-pumped YAG laser, using a KTP crystal as the nonlinear medium.  We will: 
 

 
A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm). 
 
B. Observe how the optical power at 532 nm strongly depends on phase-matching. 
 
C. Optimize and measure the efficiency of second harmonic generation. 

 
 
 
 
 

SAFETY NOTE 
 
For this experiment we use an Amoco Model ALC 1064-150P laser, which produces around 
150 mW of CW single mode power at 1.064 µm.  The human eye is not sensitive to this 
wavelength, but the radiation is transmitted through the eye and focused near the retina, 
where it can cause irreversible damage.  The danger threshold for CW viewing is around 1 
mW/cm2 entering the pupil, so you need to be careful.  Protective goggles will be available, 
and should be used at all times. 
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Second Harmonic Generation (SHG) 
 

Set up the following (this may need to be modified further for reliable measurements!): 
 

YAG Laser

KTP
crystal

prism beam
block

power
meter

2ω

ω

f ′ f 

 
 

1. Start with a lens of focal length f~ 10 or 5 cm.  To get a feel for the approximate 
beam diameter at the focus, assume an approximately 5 mm beam diameter from the 
1.064 micron YAG laser, calculate the beam waist and confocal parameter at the 
focus (ie confocal parameter = 2 x Rayleigh Range). How does this compare to the 
length of the 5 mm KTP crystal? What will be the beam waist and confocal parameter 
for the second harmonic beam? (Keep in mind that the actual beam waist coming 
from the laser is likely strongly diverging). 

 
 
2. The polarization of the YAG laser is linear. Adjust the rotation angle of the KTP 

crystal such that the polarization of the 1.064 µm beam forms an angle θ = 45°  with 
its square edges, and so the beam is focused at the center of the crystal. (If the angle 
of the linear polarization is not known, adjust the KTP to optimize the second 
harmonic light)   Fine adjust the tip and tilt angles of the KTP to maximize the green 
(532 nm) light.  Make sure you also adjust the longitudinal crystal position so that the 
beam waist coincides with the crystal position. A translation stage will be useful to 
optimize the alignment. 

  
3. Observe the power of the 532 nm light as a function of the phase matching angle.  Try 

to accurately measure the maximum green light you can generate. This can be quite 
challenging because the intense beam at 1.064 µm can easily corrupt your 
measurement, and the generated light will be very weak.  You may need more than a 
single prism to separate the beams sufficiently. A color filter may also be used to 
confirm that the power you measure is truly the green light (532 nm). Think carefully 
how to do this and make sure to estimate any significant losses from the prisms 
and/or filters.  Also be careful of scattered light (e.g. from the prism), which may be 
detected on the power meter. Also, test background levels by turning off the room 
lights. The photodiode can easily detect the room lights if not blocked.  You may also 
need to continually check and correct the alignment of the beams through the crystal 
and onto the power meter & beam block as you change the phase matching angle.   
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4. Try a few different focussing lenses (e.g. 5 cm and 10 cm) in order to optimize the 
SHG conversion efficiency.  Which choice of lens gives you the maximum amount 
of SHG? Note that the choice of focal length f  involves a tradeoff:  a short focal 
length increases the intensity at the beam waist needed for efficient SHG, but at the 
same time decreases the Rayleigh range for the beam.  If f  becomes too short the 
beam diffracts rapidly, and the intensity does not remain high along the entire length 
of the crystal.   

 
5. Although the generated SHG light power (532 nm) is low, try to measure and graph 

the detected SHG power vs. incident power (ie you’ll need at least 3 points! ) How 
would you expect this graph to look if you were able to take enough points with a 
good signal? (e.g. a linear or nonlinear relationship?) 

 
6. What is the highest conversion efficiency, η , that you can obtain experimentally?  

When you determine η , you must account for losses - especially reflection loss at 
the prism or any uncoated surfaces.   

 
7.  Near the angle of optimum second harmonic generation, record the dependence of 

second harmonic power versus the rotation angle of the crystal (see discussion at end 
of this document). 

 
Background:  Some elements of nonlinear optics 
 
Nonlinear optical susceptibility: 

The propagation of a field E  through a polarizable medium with polarization density   P  is 
governed by the wave equation, 
 

  
∇2E −

1
c2

∂ 2

∂t2
E = µ0

∂ 2

∂t 2
P .           (1) 

 
In linear optics we have 
 

  P = ε0χE , 
 
where the linear susceptibility χ  is a (constant) material parameter.   When we solve the 
problem of wave propagation we find simultaneous, self-consistent solutions to these two 
equations.  Note that the linearity of the medium response implies a superposition principle – 
electromagnetic waves passing through a linear medium do not interact. 
 
 
In nonlinear optics we make the generalization  
 

  P = ε0χ E( )E = ε0 (χ
(1)E + χ (2)E ⋅E + χ (3)E ⋅E ⋅ E + ...) ,    (2) 

 



 
 

Second Harmonic Generation, Fall 2017  4 

i. e. we allow the medium to respond to the driving field in a nonlinear fashion.  We see 
immediately that the polarization density will contain components   P 2( ) ∝ E2 ,   P 3( ) ∝ E3  etc.   For 
a monochromatic driving field of frequency ω , these components will radiate at 0ω , ω , 2ω , 
3ω  etc.    The nonlinear susceptibilities are small,χ (1) >> χ (2) >> χ (3) >> ... , and the conversion 
into higher harmonics is correspondingly inefficient - except for extremely intense fields. 
 
Note that the nonlinearity brings with it a breakdown of the superposition principle.  If the 
driving field contains two frequencies ω1  and ω2  then in addition to higher harmonics we also 
get sum- and difference frequency generation, ω1 +ω2  and ω1 −ω2 .  Electromagnetic waves 
passing through a nonlinear medium interact! 
 
 
 
Second harmonic generation: 

We now examine the wave equation (1) with a nonlinear polarization (2) up to and including 
the 2nd order susceptibility.  The driving and second harmonic fields have the form 
 

  Eω = 1
2Eω z( )e−i ωt −kω t( ) + c.c. , 

                        (3) 
        E2ω = 1

2E2ω z( )e−i 2ωt −k 2ωt( ) + c.c. . 
 
To leading orders these waves induce a polarization density  
 

  

P = P0(NL ) z( ) + 1
2 Pω

L( ) z( )e−i ωt− kω t( ) + c.c.

+ 1
2 P2ωNL( ) z( )e−i 2ωt− 2kωt( ) + c.c.

+ 1
2 P2ωL( ) z( )e− i 2ωt− k2ω t( ) + c.c.

        (4) 

 
( χ (2)E ⋅E  contains a DC term which gives rise to a DC polarization component   P0

( NL) z( ), which 
we will ignore).   The linear terms in the polarization can be accounted for in the usual way: at 
frequencies well away from any absorption resonances they simply add to the (real) index of 
refraction.  We therefore have 
 

      kω = nω
ω
c

,   
c

nk ω
ωω
2

22 = . 

 
In general n2ω ≠ nω  and therefore k2ω ≠ 2kω .  Light radiated by the nonlinear polarization at 
points z  and z + Δz  differs in phase by e−i 2kω Δz , while the 2ω  wave propagating from z  to 
z + Δz  picks up a phase e−ik 2ωΔz .  Clearly then, there is the possibility of a phase mismatch 
between the propagating and generated light, which prevents the two from interfering 
constructively.  This subtle point turns out to be an all-important consideration in determining 
the efficiency of any nonlinear conversion process.  
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The wave equation for the second harmonic component is  
 

  
∂ 2

∂z2
E2ω −

n2ω2

c2
∂ 2

∂t2
E2ω = µ0

∂ 2

∂t 2
P2ωNL( )          (5) 

 
Plugging in the field and nonlinear polarization at 2ω  from eqs. (3) and (4), using the slowly 
varying envelope approximation for   E2ω z( )  and   P2ω

( NL) z( )  we obtain 
 

    
dE2ω z( )

dz
= iω

µ0c
n2ω

P2ωNL( ) z( )ei 2 kω − k 2ω( )z = iω
µ0c
n2ω

d Eω z( )2eiΔkz ,    (6) 

 
where 

  P2ω
( NL) z( ) ≡ d Eω z( )2 , Δk ≡ 2kω − k2ω . 

 
The quantity d  is a material parameter that characterizes the effective nonlinearity of the 
medium.  For KTP we have d ≈17 ×10-9  esu ≈ 6 ×10-23 C V 2 . 
 
When the power in the second harmonic wave remains much smaller than the power in the 
fundamental (no depletion approximation) we can set   Eω z( )2 =Eω 0( )2  and integrate eq. (6) to find 
 

 
E2ω z( ) = iω µ0c

n2ω
dEω z( )2 z sin Δkz 2( )

Δkz 2
eiΔkz 2 . 

 
Using   I2ω z( )= 1

2 cε0E2ω z( ) 2 , and assuming an input intensity Iω  and a doubling crystal of length 
L , we finally obtain the intensity of the second harmonic wave at the output facet,  
 

  
I2ω L( )= κ Iω

2 L2
sin 1

2 ΔkL( )
1
2 ΔkL

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2

.           (7) 

 
This allows us to estimate the power conversion efficiency, 
 

  
η ≡

P2ω
Pω

= 2 µ0

ε0

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

3 2
ω 2 d2 L2

n3
Pω

π w2
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
sin2 ΔkL 2( )
ΔkL 2( )2

,      (8) 

 
where Pω , and P2ω  is the optical power in the fundamental and second harmonic beam, 
respectively.  For simplicity we have approximated   Iω ≈ Pω 2w2 , where   w  is the beam radius of 
the fundamental. Equations (7) and (8) are our key result.  Clearly, good conversion efficiency 
requires Δk ~ 0  and large Iω . 
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Fig. 1:  Second harmonic generation efficiency as function of phase mismatch ΔkL  

 
The Coherence Length Lc  is defined by  
 

Δk Lc ≡ π ⇒ Lc = π Δk ,  
 
and sets the length scale over which E2ω  and   P2ω  stays phase matched.  Reexamining eq. 7 we 
see that  

I2ω L( ) ∝ sin2 π
2
L
Lc

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ , 

 
i. e. given a certain minimum Δk   the optimum crystal length is Lc .  Conversely, for a given 
crystal length we are doing an adequate job of phase matching as soon as Lc >> L . 
 
Phase matching strategies. 

There are several ways in which we can independently adjust nω  and n2ω  to achieve perfect 
phase matching, Δk = 0 .  The most common method takes advantage of the fact that doubling 
crystals are birefringent. 
 
In a uniaxial crystal the index of refraction for a wave polarized along one crystal axis is 
different from the index along the remaining two axes, nx ≠ ny = nz .  Consider then a field 
propagating along the ′ z  axis, forming an angle ϕ  with the z  axis. 
 



 
 

Second Harmonic Generation, Fall 2018  7 

 
 

Fig. 2.  Indices of refraction in a uniaxial crystal. 
 
In this situation we get extraordinary and ordinary indices of refraction for linear polarizations 
along ′ x   and y , 
 

no = ny  ,  ne =
nx
2 + nz

2

nx
2 cos2ϕ + nz

2 sin2ϕ
         [9] 

 
In angle tuned phase matching we adjust the angle ϕ  (by rotating the crystal).  There are two 
ways of doing this: 

 
Type I phase matching:  n2ω

o ⋅ 2ω = nω
e ⋅ω + nω

e ⋅ω ⇒ n2ω
o = nω

e  
 
 Type II phase matching:  n2ω

o ⋅ 2ω = nω
o ⋅ω + nω

e ⋅ω ⇒ n2ω
o = 1

2 nω
o + nω

e( )  
 
In Type I phase matching the fundamental is polarized along ′ x  and the second harmonic is 
polarized along y ; two extraordinary photons at ω  combine to generate one ordinary photon at 
2ω . 
 
In Type II phase matching the fundamental is polarized at 45° to the ′ x , y  axes and the second 
harmonic is polarized along y ; an ordinary and an extraordinary photon at ω  combine to 
generate an extraordinary photon at 2ω . 
 
Phase matching in our experiment is complicated by the fact that KTP is a biaxial crystal, i. e. 
nx ≠ ny ≠ nz .  We will not discuss biaxial phase matching here, but simply note that our crystal 
has already been cut to achieve Type II phase matching when the laser beam is normal to the 
entrance facet, and linearly polarized along the diagonal.  
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ne

no

θ

  
 
ε L

 
Fig. 3.  Phase matching occurs for our precut KTP crystal when the laser 

polarization   
 
ε L  forms an angle θ = 45°  with the ordinary/extraordinary axes. 

 
Since only Type II phase matching can occur in our crystal, the second harmonic field 
  E2ω ∝Eω

oEω
e , where   Eω

o ∝Eω cos θ( )  and   Eω
e ∝Eω sin θ( ) .  This immediately tells us that 

 
I2ω ∝ Iω cos θ( )sin θ( )[ ]2∝ Iω

2 sin2 2θ( ) . 
 
As our crystal is rotated around the axis of the laser beam, the second harmonic intensity will 
therefore change as a function of θ , with a period of 90° . 
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