R.J. Jones Optical Sciences

OPTI 511L
Fall 2018

Experiment 3: Second Harmonic Generation (SHG) (1 week lab)

In this experiment we produce 0.53 ym (green) light by frequency doubling of a 1.06 ym
(infrared) diode-pumped YAG laser, using a KTP crystal as the nonlinear medium. We will:

A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm).

B. Observe how the optical power at 532 nm strongly depends on phase-matching.
C. Optimize and measure the efficiency of second harmonic generation.
SAFETY NOTE

For this experiment we use an Amoco Model ALC 1064-150P laser, which produces around
150 mW of CW single mode power at 1.064 ym. The human eye is not sensitive to this
wavelength, but the radiation is transmitted through the eye and focused near the retina,
where it can cause irreversible damage. The danger threshold for CW viewing is around 1
mW/cm” entering the pupil, so you need to be careful. Protective goggles will be available,
and should be used at all times.
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Second Harmonic Generation (SHG)

Set up the following (this may need to be modified further for reliable measurements!):
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Start with a lens of focal length f~ 10 or 5 cm. To get a feel for the approximate
beam diameter at the focus, assume an approximately 5 mm beam diameter from the
1.064 micron YAG laser, calculate the beam waist and confocal parameter at the
focus (ie confocal parameter = 2 x Rayleigh Range). How does this compare to the
length of the 5 mm KTP crystal? What will be the beam waist and confocal parameter
for the second harmonic beam? (Keep in mind that the actual beam waist coming
from the laser is likely strongly diverging).

The polarization of the YAG laser is linear. Adjust the rotation angle of the KTP
crystal such that the polarization of the 1.064 ym beam forms an angle 8 =45° with
its square edges, and so the beam is focused at the center of the crystal. (If the angle
of the linear polarization is not known, adjust the KTP to optimize the second
harmonic light)  Fine adjust the tip and tilt angles of the KTP to maximize the green
(532 nm) light. Make sure you also adjust the longitudinal crystal position so that the
beam waist coincides with the crystal position. A translation stage will be useful to
optimize the alignment.

Observe the power of the 532 nm light as a function of the phase matching angle. Try
to accurately measure the maximum green light you can generate. This can be quite
challenging because the intense beam at 1.064 um can easily corrupt your
measurement, and the generated light will be very weak. You may need more than a
single prism to separate the beams sufficiently. A color filter may also be used to
confirm that the power you measure is truly the green light (532 nm). Think carefully
how to do this and make sure to estimate any significant losses from the prisms
and/or filters. Also be careful of scattered light (e.g. from the prism), which may be
detected on the power meter. Also, test background levels by turning off the room
lights. The photodiode can easily detect the room lights if not blocked. You may also
need to continually check and correct the alignment of the beams through the crystal
and onto the power meter & beam block as you change the phase matching angle.
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4. Try a few different focussing lenses (e.g. 5 cm and 10 cm) in order to optimize the
SHG conversion efficiency. Which choice of lens gives you the maximum amount
of SHG? Note that the choice of focal length f involves a tradeoff: a short focal
length increases the intensity at the beam waist needed for efficient SHG, but at the
same time decreases the Rayleigh range for the beam. If f becomes too short the
beam diffracts rapidly, and the intensity does not remain high along the entire length
of the crystal.

5. Although the generated SHG light power (532 nm) is low, try to measure and graph
the detected SHG power vs. incident power (ie you’ll need at least 3 points! ) How
would you expect this graph to look if you were able to take enough points with a
good signal? (e.g. a linear or nonlinear relationship?)

6. What is the highest conversion efficiency, 7 , that you can obtain experimentally?
When you determine 7 , you must account for losses - especially reflection loss at
the prism or any uncoated surfaces.

7. Near the angle of optimum second harmonic generation, record the dependence of
second harmonic power versus the rotation angle of the crystal (see discussion at end
of this document).

Background: Some elements of nonlinear optics

Nonlinear optical susceptibility:
The propagation of a field E through a polarizable medium with polarization density P is
governed by the wave equation,

10 >
VZE—??EZ‘UO?P. (1)
In linear optics we have
P=¢gyxE,

where the linear susceptibility y is a (constant) material parameter. When we solve the
problem of wave propagation we find simultaneous, self-consistent solutions to these two
equations. Note that the linearity of the medium response implies a superposition principle —
electromagnetic waves passing through a linear medium do not interact.

In nonlinear optics we make the generalization

P=¢ey(E)E=¢,(x""E+y?E-E+y"E-E-E+..), 2)
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1. e. we allow the medium to respond to the driving field in a nonlinear fashion. We see
immediately that the polarization density will contain components P® e E*, P® oc E* etc. For
a monochromatic driving field of frequency @, these components will radiate at Ow , , 20,
3w etc. The nonlinear susceptibilities are small, ¥’ >> ¥ >> y® >> ..., and the conversion

into higher harmonics is correspondingly inefficient - except for extremely intense fields.

Note that the nonlinearity brings with it a breakdown of the superposition principle. If the
driving field contains two frequencies @, and ®, then in addition to higher harmonics we also
get sum- and difference frequency generation, ®w, +®, and w, —®,. Electromagnetic waves
passing through a nonlinear medium interact!

Second harmonic generation:
We now examine the wave equation (1) with a nonlinear polarization (2) up to and including
the 2nd order susceptibility. The driving and second harmonic fields have the form

E =

(0]

Ew(z)efi(wtfk“') +cc.,

=

3)

E,, =3E, (2)e ") 4 cc..
To leading orders these waves induce a polarization density

P =P™)(2) +$P)(2)e ) v cc.
+ 2P () PO e 4)

+ '%Pz(j)(z)efi(m*kz””) +coc.

( )((Z)E - E contains a DC term which gives rise to a DC polarization component PO( M)(z), which
we will ignore). The linear terms in the polarization can be accounted for in the usual way: at
frequencies well away from any absorption resonances they simply add to the (real) index of
refraction. We therefore have

w 2w
- k2a) = n2w *
c

k =n

w (0 ’

c

In general n,, # n, and therefore k,, #2k,. Light radiated by the nonlinear polarization at
points z and z+ Az differs in phase by e % while the 2w wave propagating from z to
z+Az picks up a phase e ****. Clearly then, there is the possibility of a phase mismatch
between the propagating and generated light, which prevents the two from interfering
constructively. This subtle point turns out to be an all-important consideration in determining

the efficiency of any nonlinear conversion process.
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The wave equation for the second harmonic component is

J’ >’ >

a_zzEzw - _2 o E,, = My (92‘2 Pz(aij) (&)
Plugging in the field and nonlinear polarization at 2@ from eqs. (3) and (4), using the slowly
varying envelope approximation for E,, (z) and P,)"”'(z) we obtain

dE i - z . 3 iAkz
20l2) _ iotC P (g)e' ¢ om0 = lw&dEw(z)ze ha (6)
dZ nZw n’Zw

where
B (2)=dE,(z)", Ak=2k,—k,

The quantity d is a material parameter that characterizes the effective nonlinearity of the
medium. For KTP we have d =17 x10” esu=6x10%C/V?.

When the power in the second harmonic wave remains much smaller than the power in the
fundamental (no depletion approximation) we can set E, (z)* =E_(0)” and integrate eq. (6) to find

Sin(AkZ/ 2) 2

HoC = 2
E = dE

n2w

Using 1,,(z)= ;—csolfm(z)r , and assuming an input intensity I, and a doubling crystal of length
L, we finally obtain the intensity of the second harmonic wave at the output facet,

I ['sin(4 AkL)—|

L(L)=x1I : (7
1AL |
This allows us to estimate the power conversion efficiency,
_Pe It o2 [ P, 7sin® (akL/2) &
=% =2 | T e (AkL2)

where P, and P, is the optical power in the fundamental and second harmonic beam,
respectively. For simplicity we have approximated [, = P, / 2w’ , where w is the beam radius of

the fundamental. Equations (7) and (8) are our key result. Clearly, good conversion efficiency
requires Ak ~0 and large I, .
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Fig. 1: Second harmonic generation efficiency as function of phase mismatch AkL

The Coherence Length L, is defined by

|AKL =n = L =|r/Ak

9

and sets the length scale over which E,, and P, stays phase matched. Reexamining eq. 7 we
see that
n L
L, (L)< sin’| =— |,

1. e. given a certain minimum Ak the optimum crystal length is L . Conversely, for a given
crystal length we are doing an adequate job of phase matching as soon as L >> L.

Phase matching strategies.
There are several ways in which we can independently adjust n, and n,, to achieve perfect

phase matching, Ak =0. The most common method takes advantage of the fact that doubling
crystals are birefringent.

In a uniaxial crystal the index of refraction for a wave polarized along one crystal axis is
different from the index along the remaining two axes, n, # n,=n_. Consider then a field

propagating along the 7z’ axis, forming an angle ¢ with the 7z axis.
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Fig. 2. Indices of refraction in a uniaxial crystal.

In this situation we get extraordinary and ordinary indices of refraction for linear polarizations
along x” and y,

2 2
n +n

[9]

n =n,, n,= -

’ n cosz(p+n§ sin” @
In angle tuned phase matching we adjust the angle ¢ (by rotating the crystal). There are two
ways of doing this:

Type I phase matching: ny, 20 =n,-@+n,-® = n,, =n,

Type II phase matching: ny, 20 =ny ®+n, -0 = ng, =5(n, +n)

In Type I phase matching the fundamental is polarized along x” and the second harmonic is
polarized along y; two extraordinary photons at @ combine to generate one ordinary photon at

20 .

In Type II phase matching the fundamental is polarized at 45°to the x”, y axes and the second
harmonic is polarized along y; an ordinary and an extraordinary photon at @ combine to
generate an extraordinary photon at 2@ .

Phase matching in our experiment is complicated by the fact that KTP is a biaxial crystal, i. e.
n, #n,#n.. We will not discuss biaxial phase matching here, but simply note that our crystal

has already been cut to achieve Type II phase matching when the laser beam is normal to the
entrance facet, and linearly polarized along the diagonal.
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Fig. 3. Phase matching occurs for our precut KTP crystal when the laser
polarization €, forms an angle 6 =45° with the ordinary/extraordinary axes.

Since only Type II phase matching can occur in our crystal, the second harmonic field
E,, <E,E, ., where E’ <E_cos(0) and E‘ «<E_sin(6). This immediately tells us that

@

I

vo < [, cos(8)sin(8)] < I sin*(20).
As our crystal is rotated around the axis of the laser beam, the second harmonic intensity will
therefore change as a function of 8, with a period of 90°.
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