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Experiment: Saturated Absorption Spectroscopy (2 weeks) 
In this experiment we explore the use of a single mode tunable external cavity diode laser 
(ECDL) to perform saturation spectroscopy in Rb vapor. 
 
 

Objectives: 
 
I To become familiar with a single frequency external-cavity diode laser (ECDL) 

and to characterize the laser in terms of frequency tunability.  
 
II To study the level structure of a real atom, as opposed to the familiar, idealized 2-

level atom.  We will set up and perform spectroscopy in a room temperature, low 
pressure vapor cell of Rb. This will allow us to observe the Rb Doppler profile, 
the Lamb dips and cross-over dips. We can also directly observe the effects of 
power broadening on an atomic transition. 

 
III To understand the complex hyperfine structure of the Rb D2  transition.  This is 

accomplished using the quantum theory of angular momenta. The insight that we 
gain is applicable also in other atomic and molecular systems. In particular we 
will see that the separation between hyperfine states obey Landé's interval rule. 

 
 
 
 
 
 
 
 
 
 
 
 



Saturation Spectroscopy, Fall 2017  2 

 Questions to address in your lab writeup: 
 
 (It may be best to work on part of this calculation outside of the lab time.) 
 
 (1)  Rb  atomic transition. 
 Calculate the Doppler broadened linewidth of a Rb transition in a vapor cell at room 
temperature (mRb=1.42 ×10-25 kg).  The vapor pressure of Rb in the absorption cell is 
roughly 4×10−10 atmospheres.  Calculate the number density of Rb atoms (use ideal gas 
law).  Given a homogeneous linewidth of 6 MHz, and the Doppler width calculated 
above, what fraction of the atoms interacts with the laser at the center of the Doppler 
profile?  Assuming a resonant scattering cross section of 3λ2 2π , estimate the resonant 
absorption coefficient for a low intensity beam.  What is the attenuation of a resonant 
beam passing though a 5 cm  long Rb cell? 
 Given the Rb87 hyperfine structure shown in fig. 6 (see attached discussion), compute 
the relative position of the Lamb and cross-over dips in the saturated absorption 
spectrum, for the multiplets starting from the F=1 and F=2 ground states respectively.  
Use these numbers to label the positions of the real transitions and cross-over resonances 
in your saturation absorption experiment. 
 
(2) Make a sketch of the energy level diagrams for Rb85, similar to that shown for Rb87 in 
Fig. 6, that includes the appropriate quantum numbers for the ground and excited 
hyperfine states F, F’ (hint: the nuclear spin of Rb85 is I=5/2) 
 
Outline of the experiment: 
 
Calibrate the ECDL laser frequency tuning.  
 

1. The ECDL provides stable single frequency operation. Coarse tuning of the laser 
(ie its wavelength) can be accomplished by controlling the angle of the external 
grating. Fine-tuning of the laser frequency is accomplished by changing the laser 
current or by changing the external cavity length (translating the grating) using a 
pzt.  Using the scanning Fabry-Perot cavity (1.5 GHz or better yet 10 GHz), 
determine the coefficient that relates the laser frequency shift to changes in the 
voltage applied to the pzt [Hz/V]. To do this, you may choose to use a function 
generator to produce a sine wave, and scan the laser frequency across one free-
spectral range of the cavity. It may be easiest to first scan the Fabry-Perot 
Interferometer (FPI) in the usual way to confirm the ECDL is running single 
frequency. Then, shut off the FPI scan, and only scan the laser. Use the FPI to 
calibrate your scan. Keep this set up so you can make calibrated measurements 
of the hyperfine splitting’s in your spectroscopy experiments. 
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Please use caution when operating this laser and ask the TA for instructions on its 
operation. This is a particularly expensive and sensitive piece of laboratory 
equipment. 
 
Locate the Doppler-broadened transitions: 
 
2. Use the Agilent OSA to analyze the laser output spectrum.  Take appropriate 

precautions to avoid unwanted optical feedback to the laser. Align the laser for single 
mode operation at the wavelength of the Rb transition by adjusting the laser current 
and pzt voltage (780.0 nm in air, 780.2 nm in vacuum- be sure to check the OSA for 
which setting it is in). If needed, ask your TA for assistance in adjusting the external 
grating. Make sure the current stays below 120 mA.  

 
3. Apply a ramping voltage to the PZT controller and slowly scan the laser frequency (at 

a rate of ~ 10 Hz. Send a weak optical probe beam through the Rb cell and onto a 
photodiode. The beam intensity should be well below the saturation intensity for the 
Rb transitions (see attached discussion). Be sure you do not saturate the atomic 
transition or the photodiode so that you obtain a strong absorption signal. Tune the 
laser frequency and look for absorption using the photodiode measured in 
transmission. Once you locate the Doppler broadened transitions, maximize the scan 
range such that you can locate the 4 absorption peaks. Depending on how far you can 
continuously scan the laser without a mode hope, you may or may not be able to see 
all 4 peaks in a single scan. These 4 peaks correspond to transitions from the two 
ground state hyperfine levels of Rb87 and Rb85. Due to Doppler broadening, you will 
not be able to resolve the hyperfine structure of the upper levels yet.  

 
 Now, determine which 2 peaks correspond to the 3.0 GHz hyperfine splitting of the 

Rb85 ground state and which belong to the 6.8 GHz hyperfine splitting of the Rb87 
ground state. Measure the Doppler broadened linewidth for one of these and compare 
with theory. 
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Hyperfine structure: saturated absorption spectroscopy 
 
4. Modify your setup for a saturated absorption experiment (Fig. 2 gives one simple 

example for the configuration, your TA will show you other possibilities), taking 
appropriate care to avoid optical feedback to the laser while still maintaining good 
beam overlap in the vapor cell. Use the function generator to ramp the laser frequency 
repeatedly across one of the 4 hyperfine multiplets, and display the transmission vs. 
frequency on an oscilloscope.  You will see a number of dips in the absorption - these 
lines arise when the frequency of the counter-propagating laser beams coincide with 
various hyperfine transitions in the Rb vapor.  Measure the relative (frequency) 
separations of these features. Sketch in your lab notebooks what you observe on the 
scope.  

 
 
5. Identify the transitions you are measuring. Based on the results from problem (ii) 

above, assign the observed features to saturation and cross-over lines.  Confirm the 
Landé interval rule by measuring the spacing between transitions (see last page of 
attached discussion).  Are you seeing the multiplet starting from the  F=2 or the F=3 
ground state of Rb85? Or from the ground state of F=1 or F=2 of Rb87? 

 
Optical pumping: 
 
6. You will observe that the Doppler profiles for the multiplets corresponding to, for 

example, the F=2 ground state of Rb87 is centered on the    F=2 → F’= 3 transition 
(that is, the Doppler broadened background is not symmetric). Can you explain this in 
terms of optical pumping between hyperfine states? If not, be sure to discuss with 
your group and in class (optical pumping is discussed below). 

 
Natural linewidth, power broadening (skip if time is short): 
 
7. If time allows, you may use a variable attenuator to measure the linewidth of one of 

the saturated absorption features as a function of laser power (if possible).  Compare 
functional dependence to theory for the power-broadened 2-level atom.  Are you able 
to extrapolate to zero power and estimate the natural linewidth? 
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Review of saturated absorption spectroscopy 

 
Please note: in this discussion, Planck's constant is used a number of times.  Because of 
computer and font incompatibilities, ! shows up as h.  
 
The Doppler width of a room temperature Rb vapor is greater than the separations 
between atomic hyperfine levels in the excited state.  It is therefore not possible to 
resolve the excited state hyperfine structure of Rb by measuring the frequency dependent 
absorption in a Rb vapor.  One might speculate if it is possible to reduce the Doppler 
width of a Rb vapor by cooling the cell.  Unfortunately the Doppler width varies slowly 
with temperature, as T 1 2 , while the vapor pressure varies very fast, approximately as 
exp −η T( ) , so the absorption vanishes before the Doppler profile is significantly 
narrowed.  In this experiment we investigate the Rb hyperfine spectrum through the use 
of a spectroscopic technique known as saturated absorption spectroscopy, which is 
capable of achieving sub-Doppler resolution.  
 
 
Case of a 2-level atom. The Lamb dip. 
 Consider a 2-level atom interacting with two counterpropagating plane waves, in the 
configuration of fig. 2.  We assume that the plane waves both have polarization ˆ ε  and 
frequency ω .  The waves propagate in the ± ˆ z  directions, and have amplitudes   E1 and   E2 , 
  E1 >>E 2 .  We refer to the plane waves (1) and (2) as the "pump" and the "probe" 
respectively.  The electric fields are: 
 
          

! 
E 1 = ˆ ε E1e

−i (ωt− kz ),       
! 
E 2 = ˆ ε E2e

−i (ωt +kz )  
 
The distribution of atomic velocities along the ˆ z -axis is Maxwell-Boltzmann, i.e. the 
number density of atoms with velocities in the interval between   v  and   v + dv  is 
 

      
  
N v( )dv = N

m
2πkBT

 e−mv2 2k BTdv , 

 
where N  is the total number density of atoms.  In the presence of the pump wave only, 
we can find the steady state number densities   Ng v( )  and   Ne v( )  of atoms in the ground 
and excited states (see e. g. "Lasers", Milonni & Eberly, chapter 7): 
 

     
  
Ne v( ) = N v( )σ ω − kv( ) Φ

A + 2 σ ω − kv( )Φ ,     Ng v( ) = N v( ) − Ne v( ) , 

where  

     σ ω( )  =  3λ2

2π
 A2

4Δ2 + A2 ,  Δ = ω − ω0  
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is the frequency dependent cross section for photon scattering, and   Φ = I !ω  is the 
"photon flux".   In these expressions ω0  is the atomic transition frequency, λ = 2πc ω0  
is the transition wavelength, and A  is the Einstein A -coefficient for spontaneous decay 
from the upper to the lower state.  
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Fig. 2): One possible saturated absorption setup (others discussed in class).  The 
Rb vapor in the cell interacts with two counter-propagating laser beams, in the 
text referred to as the "pump" and the "probe".  The frequency-dependent 
transmitted intensity of the probe is recorded as a function of laser frequency, 
resulting in a measurement of the saturated absorption spectrum. 

 
 Fig. 3 shows   Ng v( )  for some detuning Δ = ω − ω0  between the pump/probe 
frequency and the atomic resonance.  The phenomenon of "hole-burning" is apparent - 
there is a sharp depletion of   Ng v( )  for a velocity class around Δ k , where atoms are 
Doppler shifted into resonance with the pump and a substantial fraction become excited. 
For a probe beam intensity I  the FWHM of the hole is  
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     Δ FWHM = A 1 +
2σ ω0( )Φ

A
= A 1 + I

I0
, 

 
where   I0 = A 2σ ω0( )!ω  is the saturation intensity (≈ 1.1 mW cm 2  for the Rb D2  
transition).  For I << I0  the width of the hole is the natural linewidth A  (6 MHz for the 
Rb D2  transition).  
 

  v m s( )

  v = ∆ k   Ng v( )

0 200-200  
 
Fig. 3): Hole-burning in   Ng v( ) , the velocity dependent number density of ground state 

atoms.  In this example T = 300 K , Δ = −10A and I ≈ I0 . 
 
 Because the probe beam is much less intense than the pump beam, its presence does 
not significantly affect the number density of ground and excited state atoms.  We then 
find the following expression for the extinction coefficient experienced by the probe at 
frequency ω : 

     
  
a ω( ) = σ ω + kv( ) Ng v( ) − Ne v( )[ ]dv

−∞

∞

∫  

 
The transmission through a cell of length l  can now be found as e− a ω( ) l .  Note that 
saturated absorption will result in increased transmission, and thus a more intense output 
beam in the setup of fig. 2. 
 
 A more thorough analysis shows that, for I << I0  and in the case of an optically thin 
gas, there is a minimum in the absorption of the probe with a FWHM equal to the 
homogeneous linewidth A . 
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 Fig. 4 shows the detuning dependent absorption of the probe in the presence of the 
pump.  A sharp dip - the Lamb dip - is evident for Δ = 0 , i. e for a laser frequency close 
to the atomic transition frequency.  We can understand the physical origin of the Lamb 
dip as follows: the pump depletes   Ng v( )  for a velocity class around   vpump = Δ k .  At the 
same time the probe interacts with a velocity class around   vprobe = −Δ k .  As long as 
these velocity classes are distinct,  i. e. as long as the pump and probe interacts with 
different atoms, the presence of the pump does not affect the absorption of the probe.  
However, when Δ = 0  we have   vpump = vprobe, i. e. the pump and the probe interacts with 
the same velocity class.  The depletion of ground state atoms caused by the pump then 
leads to a reduction in the absorption of the probe.  By measuring the position of the 
Lamb dip we can then determine the atomic frequency with a resolution comparable to 
the natural linewidth A , even if the Doppler broadened linewidth is many times larger. 
 
 

20

50

50-50 0

a m−1( )

∆ A

 
 
Fig. 4): Lamb dip in a gas of 2-level atoms with the mass and transition parameters of 

Rb.  Parameters as in fig. 3), also N =101 0 cm-3 . 
 
 
 
Case of a 3-level atom. The cross-over dip. 
 We now consider saturated absorption by a sample of atoms with a single ground 
state g  and two excited states e1 , e2 , as shown in fig. 5.  As the pump/probe 
frequency is scanned across the absorption profile one observes two independent Lamb 
dips, one for ω = ω1  and one forω = ω2 .  As explained above these Lamb dips occur 
whenever the pump/probe frequency is equal to an atomic transition frequency.  
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 An additional feature is found in the saturated absorption spectrum of this multilevel 
atom.  Consider a velocity class around a velocity   v  such that   ω + kv =ω2  and 
  ω − kv = ω1.  For these atoms the pump will excite the transition g ↔ e1 , and deplete 
the number density of ground state atoms.  This depletion of ground state atoms will in 
turn lead to a decrease in the absorption of the probe, since fewer atoms are available for 
excitation on the transition g ↔ e2  (fig. 5b).  Similarly there will be a velocity class 
around velocity   −v  where the pump excites the g ↔ e2  transition and depletes the 
number density of ground state atoms available for absorption on the g ↔ e1  (fig. 5c).  
The result is the so-called cross-over dip in the absorption, which occurs at a pump/probe 
frequency of ω = ω1 +ω2( ) 2 . 
 More generally, if the atoms in the sample have one ground state and n  excited states, 
there will be n  Lamb dips and n n −1( ) 2  cross-over dips corresponding to all possible 
ways the upper states can be combined in pairs.  For the Rb85 D2  multiplets we have 3 
excited states that are allowed by the selection rule ΔF = 0, ±1 , and therefore we expect 3 
Lamb dips and 3 cross-over dips in the absorption profile.  Their relative positions can be 
found based on the separations given in fig. 6. 
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v = ω + ω1( ) k
= ω − ω2( ) k   

v = ω − ω1( ) k
= ω + ω2( ) k

 
 

 
Fig 5):  a) 3-level atomic system for which both Lamb and cross-over dips are seen.  

The cross-over dip occurs when the pump-probe beams at frequencyω  are 
Doppler shifted into resonance with the g ↔ e1  and g ↔ e2  transitions.  
This happens for two velocity classes around   v = ω +ω1( ) k = ω − ω2( ) k  (b) 
and   v = ω − ω1( ) k = ω +ω2( ) k  (c). 
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Optical Pumping. 
 Consider a sample of Rb87 atoms (see level scheme in fig. 6) initially in the F=2 
ground state.  If these atoms are excited on the F=2 → F’=3 transition, there will be some 
population transferred to the F’=3 excited state.  Because of the selection rule ΔF = 0, ±1 , 
atoms in the F’=3 excited state can only decay to the F=2 ground state (and not the F=1 
ground state).  Such a transition is referred to as a closed transition, since the total 
number of atoms in the F=2 and F’=3 states is obviously conserved. 
 
 Consider now a sample of Rb atoms initially in the F=2 ground state, but let these 
atoms be excited to the F’=2 excited state by a laser at the appropriate frequency.  Atoms 
in the F’=2 excited state can decay both to the F=2 and F=1 ground states.  An atom that 
decays to the F=2 ground state can be excited again; however an atom that decays to the 
F=1 ground state stops interacting with the light field, since all transitions beginning from 
the F=2 ground state are very far detuned from resonance (see fig. 6 ).  Atoms that decay 
to the F=1 ground state will therefore not be excited again, and can never be transferred 
back to the F=2 ground state.  Hence, after a few absorption/spontaneous decay cycles, 
all atoms in the sample will eventually be transferred to the F=1 ground state, and the 
sample will become transparent.  This process is referred to as optical pumping. 
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 Rb atomic structure:  
 
Electron configuration: 
 Rb has 2 naturally occurring isotopes; Rb85 (72.2% abundance, I=5/2) and Rb87 
(27.8% abundance, I=3/2). The ground state electronic configuration is identical to the Kr 
atom with an additional 5s electron (i. e. the atom has a single 5s electron outside a core 
composed of completely filled subshells).  The first excited state of the Rb atom 
corresponds to a transfer of the 5s electron to a 5p state.  It has long been known that 
when one looks at the 5s-5p transition in the spectrum of light emitted from a Rb 
discharge, one sees two closely spaced resonance lines, historically named the D1  and D2  
lines.  This splitting of the 5s-5p spectral line is known as fine structure.  As 
demonstrated in this experiment, saturated absorption spectroscopy reveals many more 
closely spaced resonance lines - this splitting in turn is known as hyperfine structure.  The 
hyperfine levels involved in the D2  transition are shown in fig. 6).  All the splittings 
between the hyperfine levels have very simple physical interpretations in terms of the 
interaction between the magnetic moments associated with the electron orbital and spin 
angular momentum, and the angular momentum of the atomic nucleus.  To permit such 
an interpretation, we briefly review the basic elements of angular momentum theory in 
quantum mechanics. 
 
Orbital angular momentum, the quantum number L: 
 In quantum mechanics electrons moving in the Coulomb potential created by the 
nucleus have orbital angular momentum ˆ L .  ˆ L  is defined as in classical mechanics: 
ˆ L = ˆ r × ˆ p  , but ˆ L  and the position ˆ r  and the momentum ˆ p  are operators.  Consider now 

the component ˆ L z = ˆ y ̂  p x − ˆ x ̂  p y .  The Heisenberg uncertainty relations prevent a 
simultaneous measurement of e. g. ˆ x  and ˆ p x ; hence one cannot simultaneously measure 
all three components of ˆ L .  More specifically, one can use the commutation relations for 
ˆ r  and ˆ p  to derive the commutation relations for the components of ˆ L ; this proves that 
the components of ˆ L  do not commute and therefore are not simultaneously observable.  
In other words: an atomic state cannot correspond to well defined values of all three 
components ˆ L x , ˆ L y  and ˆ L z . If we define ˆ L 2 = ˆ L x

2 + ˆ L y
2 + ˆ L z

2 , it can however be shown that 
atomic states correspond to well defined values of ˆ L 2  and ˆ L z .  This simply means that 
only the magnitude of ˆ L  and its projection on one  axis can be measured simultaneously.  
The eigenvalues (possible outcomes of a measurement) are 
 
   ˆ L 2 :   !

2L L + 1( )   L ≥ 0,  integer  
   ˆ L z :   !mL     −L ≤mL ≤ L,  integer         (1) 
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Fig. 6): Rb87 hyperfine structure in the ground and excited states. Transitions between 

these hyperfine states form the D2  multiplet of resonance lines. 
 
States with L = 0,1,2, 3  are known as s, p,d , f  states respectively.  A group of 2L +1 
states corresponding to a particular value of L  and the radial quantum number, but 
different quantum numbers mL , are referred to as a subshell. 
 
Spin angular momentum, the quantum number S : 
 Particles such as electrons, protons and neutrons all have an intrinsic angular 
momentum  ˆ S , the spin.  Spin angular momenta behave just like orbital angular 
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momenta, except that spin angular momenta are half-integer, i. e. the eigenvalues of the 
operators ˆ S 2  and ˆ S z  are 
 
 
 
   ˆ S 2 :   !

2S S +1( ) = 3!2 4   S =1 2  
   ˆ S z :   !mS       mS = ±1 2 .         (2) 
 
 
Total electron angular momentum, the quantum number J : 
 Orbital and spin angular momenta of all the electrons in an atom can be added, 
resulting in a total angular momentum ˆ J = ˆ L + ˆ S .  Again we have eigenvalues and 
quantum numbers 
 
   ˆ J 2 :   !

2J J +1( )   L − S ≤ J ≤ L + S,  integer or half - integer  
   ˆ J z :   !mJ     −J ≤ mJ ≤ J,  integer or half − integer     (3) 
          
Whenever two angular momenta ˆ J 1  and ˆ J 2  are added to yield a total angular momentum 
ˆ J = ˆ J 1 + ˆ J 2 , then the quantum number J  takes on all the values J1 − J2 ≤ J ≤ J1 + J2 .  If 
for example J1 = 4,  J2 = 2 , then the possible values of J  are 2, 3, 4, 5,6 . 
 
 We can now add the angular momenta of all the electrons in an atom.  There is some 
significance to the order in which this is done; we will however ignore this question here. 
One important result is that the total angular momentum of all the electrons in a filled 
subshell is zero.  This is easy to show by arranging electrons into pairs with quantum 
numbers mL , −mL( )  and mS ,−mS( ) ; hence mL∑ + mS∑ = 0  and ˆ J z = 0 .  But if the only 
allowed eigenvalue of ˆ J z  is zero, then J = 0 . For an atom such as Rb, consisting of a 
series of closed shells plus a single unpaired electron with orbital and spin angular 
quantum numbers L  and S =1 2 , the possible values of the quantum number for the total 
angular momentum are J = L ±1 2 . 
 
Fine-structure: 
 With an electron in an atomic state one can associate a probability current   J  that 
circulates around the atomic nucleus - this is the quantum mechanical analogy of the 
classical concept of an orbiting particle.  Since an electron is charged, the probability 
current is equivalent to a circulating electrical current   e J .  This current in turn gives rise 
to a magnetic dipole moment µL ∝ ˆ L . 
 
 Similarly, an electron has an intrinsic magnetic moment µ S = µB

ˆ S , where µB  is the 
Bohr magneton. 
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 Depending on the relative orientation of the angular momenta ˆ L  and ˆ S , there is an 
interaction energy associated with the magnetic dipoles µL  and µ S .  Thus there is a shift 
ΔE  of the energy of the atomic states which is proportional to µL ⋅µS , and therefore 
proportional to ˆ L ⋅ ˆ S .  But if we remember that 
 

       ˆ L ⋅ ˆ S =
ˆ J 2 − ˆ L 2 − ˆ S 2

2
,            (4) 

 
and also remember that the eigenvalues of the operators ˆ J 2 , ˆ L 2  and ˆ S 2  are given by eqs. 
1, 2 and 3, then we see that  
 
       ΔE ∝ J J +1( ) − L L +1( ) − 3 4 .         (5) 
 
This allows us to compute the relative values of the fine-structure shift for states with the 
same quantum number L  but different values of the quantum number J . 
 
 Consider now the ground state of the Cs  atom.  Because the unpaired electron is in a 
6s  state we have L = 0 , S =1 2 and J = 1 2 .  Because there is only one possible value of 
J  there is only one ground state.  Also, the value of the energy shift is ΔE = 0   (Note: 
there are other contributions to the fine-structure in atoms that do lead to a shift of the 
ground state; these contributions do not produce a splitting of states and are therefore 
ignored here). 
 
 Consider then the first excited state of the Rb atom.  The unpaired electron is in the 
5p state and we have L =1, S =1 2  and J = 1 2,3 2 .  The two states corresponding to 
different values of J  are shifted by ΔE1 2 = −2κ 6p  and ΔE3 2 = κ6 p , where κ 6 p  is a 
constant that depends in a very complicated way on the electronic structure of the Rb 
atom.  For atomic species (such as Rb) with a valence subshell that is less than half filled, 
the constant κ  is positive, whereas for a valence subshell that is more than half filled κ  
is negative.  We now see why the Rb 5s – 5p transition is actually split into two lines with 
a separation given by the upper state fine-structure splitting.  
 
 From eq. 5 we see that the energy splitting of two states with angular momentum 
quantum numbers J  and J −1 is 
 
     δEJ = ΔEJ − ΔEJ−1 ∝ J J +1( ) − J − 1( )J ∝ J ,       (6) 
 
i. e. the fine-structure splitting is proportional to the total angular momentum of the upper 
state.  This result is known as Landé's interval rule.  For Rb the fine structure splitting of 
the 5s – 5p transition is approximately 15 nm.  We are therefore not able to observe fine 
structure in this experiment due to the limited tuning range of the laser. 
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Hyperfine structure: 
 We have so far determined the (relative) fine structure splitting of atomic states 
characterized by different quantum numbers J  for the total electron angular momentum.  
We must now take into account the interaction between the total magnetic moment of the 
electrons and the nuclear magnetic moment.  The nuclear magnetic moment is 
proportional to the nuclear spin ˆ I , and the resulting interaction energy is ΔEF ∝ ˆ J ⋅ ˆ I .  
For Rb87 the nuclear spin quantum number is I=3/2. 
 
Total atomic angular momentum, the quantum number F : 
 As was the case for fine-structure, we obtain hyperfine states with angular momentum 
ˆ F = ˆ I + ˆ J , where 

 
   ˆ F 2 :   !

2F F +1( )   I − J ≤ F ≤ I + J,  integer  
   ˆ F z :   !mF     −F ≤ mF ≤ F,  integer         (7) 
 
(integer values occur because both I  and J  are half-integers). 
 
Hyperfine structure: 
 We know that the Rb87 ground state has J = 1 2  and therefore two possible values 
F=1,2 of the total angular momentum.  The ground state thus is split into two hyperfine 
states.  The ′ J = 3 2 excited state is split into four states with F’=0,1,2,3.  This is the 
hyperfine structure shown in fig. 6.  Proceeding as for the fine structure splitting, we see 
that the hyperfine splitting between states F  and F −1  also obeys The Landé interval 
rule 
 
     δEF = ΔEF − ΔEF−1 ∝ F F +1( ) − F −1( )F ∝ F .       (8) 
 
Thus the splittings of the four excited state hyperfine levels have relative magnitudes 
3:2:1 (see fig. 6).  In our experiment we observe transitions between levels in the ground 
and the ′ J = 3 2   excited state hyperfine manifolds; the number and relative separation of 
saturated absorption features in our spectrum can therefore be explained simply in terms 
of hyperfine states and Landé's interval rule. 
 


