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We present the design of a mode converter which transforms a Hermite-gaussian mode of arbitrarily high order to a Laguerre- 
gaussian mode and vice versa. The converter consists of two cylindrical lenses and is based on appropriate use of the Gouy phase. 
We demonstrate mode conversion experimentally and consider where the concomitant transfer of orbital angular momentum is 
localized. 

1. Introduct ion 

A paraxial light beam of circular polarization is 
known to carry spin angular momentum of +fi or 
- f i  per photon, for a + or a -  polarized beams, re- 
spectively. Interaction of such a light beam with a 
birefringent plate may lead to a mechanical torque, 
as was first demonstrated by Beth [ 1 ]. Recently we 
have shown theoretically that orbital angular mo- 
mentum of light is also a useful concept for a par- 
axial light beam, particularly for a Laguerre-gaus- 
sian beam, which has a (exp il~) azimuthal depen- 
dence [ 2 ]. Explicit calculation based on Maxwell's 
equations shows that such a beam, when linearly po- 
larized, carries lfi orbital angular momentum per 
photon. When the beam is circularly polarized, it 
carries ( l_  1 )fi as total angular momentum per pho- 
ton. We have speculated that conversion of a par- 
axial beam with specific orbital angular momentum 
into another beam, with a different orbital angular 
momentum, will give rise to a torque on the con- 
verter. In the previous paper [2] the properties of  
the converter were only briefly alluded to. In this pa- 
per we discuss the design of  the mode converter in 
detail, and report experimental demonstration of its 
ability to transform modes. We also analyze theo- 
retically how the converter takes up the change in 
orbital angular momentum of the light beam. 

The first part of  our paper is, in fact, a generali- 

zation of previous work by Tamm on gaussian mode 
conversion [ 3,4 ]; we extend the results obtained by 
Tamm for low-order modes to modes of arbitrary or- 
der. There is also a strong connection with recent 
work by Abramochkin and Volostnikov [ 5 ]; they also 
deal with the influence of astigmatism on gaussian 
modes. They consider cases in which the astigma- 
tism does not conserve the gaussian mode character 
of  the incoming beam, in that the transverse inten- 
sity pattern of  the outcoming beam changes upon 
propagation. We deal with suitable astigmatic ele- 
ments which conserve the mode character and thus 
operate as mode converters; this restriction greatly 
simplifies the theoretical discussion. 

2. M o d e  decompos i t i on  

In this section we introduce expansion formulas 
for a Hermite-gaussian (HG)  and a Laguerre-gaus- 
sian (LG) mode which will turn out to be essential 
for an understanding of the mode converter. We use 
the following definitions for the amplitude of the 
Hermite-gaussian (HG)  and Laguerre-gaussian 
(LG)  laser modes which propagate along the z axis 

HG unto ( x, y, z) =CHmG(l/w) exp[ - i k ( x E  + yE) /2R ] 

Xexp[ - (xE+y2) /w 2 ] exp[ - i ( n + m +  1 )q/] 

xH.(xx/5/w) Hm(yv/E/w) , (1) 
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LG u.m(r ,~,z)  

LG = C . m ( 1 / w )  exp( -ikr2/", re) exp( - r 2 / w  2) 

X e x p [ - i ( n + m + l ) ~ ]  e~ ) [ - i ( n - m ) 0 ]  

X ( -  I )mintn'm)(r,v/2/W ) I, -ml 

In--ml 2 2 XLmi.(~,,.)(2r /w  ) ,  (2) 

with 

R ( z ) = ( z 2  + z 2 ) / z ,  (3) 

½kw2(z) = (Z2R +Z2)/ZR, (4) 

~'(Z) =arctan(z/zR) . (5) 

H,(x)  is the Hermite polync nial of  order n, L~(x)  
is the generalized Laguerre p flynomial [ 6 ], k is the 
wave number, and ZR is the t ayleigh range (half the 
confocal parameter) of the mode. We introduce 
N =  n + m as the order of  th~ mode. Normalization 
of the amplitude such that f dx dy I u l z = 1 yields 

f _ x l / 2  
- -nO " 2 X 2_N/2 

" 2 .~ /2  

Note that the indices we use 
from those normally used. "1 
really used is rain (n, m),  the 
the azimuthal index l is n - ,  
advantages in the context ot 
shall show that a mode con 
HG,m mode into a LG,m m( 

By using relations between 
polynomials (see e.g. refs. [2 
a LG mode can be decomp 
modes of the same order: 

(6) 

• ( 7 )  

or the LG mode differ 
ae radial index p nor- 
minimum of n and m; 
7. Our notation brings 
the present paper: we 
erter can transform a 
:ie or vice versa. 
Hermite and Laguerre 
5 ] ) one can show that 
,sed into a set of  HG 

LC z) ? b ( n ,  i ) Ha Unm(X 'Y '  Z m, = U~--k.k(x,y, Z), (8) 
k=O 

with real coefficients 

. ,  i" (N-k)!k! '~ '/2 
b (n ,m,K)=~.  ~ ,] 

l d k 
X ~..-d- ~ [ ( 1 - t ) " ( l + t ) ' ]  , = o -  (9) 

The factor i k in eq. (8) corre, ponds t oa  7t/2 relative 

phase difference between successive components. 
Perhaps surprisingly, a HG mode whose principal 
axes make an angle of  45 ° with the (x, y) axes (a 
'diagonal' mode) can be decomposed, using rela- 
tions between products of  Hermite polynomials 
[2,5 ], into exactly the same constituent set: 

unG { x + y  x - y , z )  
°m 5 

N 
b(n, m, k) rl~ z) , (10) = UN__k,k(X, Y, 

k=0 

with the same real coefficients b(n, m, k) as above• 
In this expansion, however, the successive compo- 
nents are in phase. In fig. l some examples of a mode 
decomposition of order 2 are given in diagrammatic 
form. In table 1 the coefficients b(n, m, k) are given 
for modes up to order 3. For completeness we note 
that the relationship between the LG and HG modes 
can also be established via operator algebra [ 7 ] and 
by direct comparison with a 2D quantum harmonic 
oscillator [ 8 ]. 

3. A s t i g m a t i c  G o u y  p h a s e  

From eqs. ( 8 ), (10) it is clear that in order to per- 
form the conversion from a HG mode to a LG mode 
one has to rephase the terms in the decomposition. 
This can be done by exploiting the Gouy phase ~u(z) 

( nm)  

02  

11, 

20 

1 i 1 O= if m 
1 1 

i 1 
I ~ - ~ r ~  U - ~  000 

1 1 1 = + lll 

1 1 1 

Fig. 1. Examples of the decomposition of HG.m and LGnm modes 
of order 2. 
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Table 1 
The coefficients b(n, m, k) which occur in eqs. (8), (10). 

1 February 1993 

n m k=0 1 2 3 

0 0 1 

o 1 
1 0 1 /~ /2  -- 1/V/'2 

0 2 1/2 I Ix/'2 
1 t i / , f 2  o 
2 0 I/2 - l/x//2 

0 3 l / . ~  3V/~ 
1 2 x / 3 / 8  1/x/"8 
2 l 
3 0 l /x /~  - x / 3 / 8  

1/2 
- 1/v/2 
1/2 

-1/v~8 

x/3/8 
x/3/8 
-1/4  

of a gaussian mode which appears in eqs. ( 1 ), (2),  
i.e. the phase shift that the beam undergoes when 
going through a waist as compared to that of a plane 
wave. Tamm has recognized that one can use the dif- 
ference in Gouy phase between an astigmatic HGo~ 
and HG~o mode to convert a first-order LG mode to 
a HG mode [ 3 ]. Here we show that an arrangement 
similar to that used by Tamm can transform modes 
of arbitrary order. 

For an isotropic (i.e., non-astigmatic) gaussian 
beam the Gouy phase appears in eqs. ( 1 ), (2) as 

( n + m +  1) ¢t(z) ,  (11) 

with ~/(z) =arctan(z/zR) for a waist at position z=0.  
For an astigmatic beam the situation is different. 
Consider first an astigmatic HG beam which has its 
nodal lines parallel to the axes of  the astigmatism. 
Such a beam can be produced by passing a HG beam 
through a cylindrical lens aligned along the axes of 
the mode pattern. The amplitude of this mode can 
be considered separately in the two transverse planes 
(x, z) and (y, z); in each plane the beam is char- 
acterized by the z-coordinate and the Rayleigh range 
of the waist. The resulting Gouy phase has two con- 
tributions, one from each transverse direction [ 9,10 ], 
and may be written as 

( n + l / 2 )  ¢,x(Z)+(m+l/2) ~y(z) ,  (12) 

with 

Yz = arctan [ ( z -  zox) /ZR~] , (13) 

yy =arctan [ (Z--Zoy)/ZRy], (14) 

where Zox and Zoy are the positions of the waists and 
ZR~ and ZRy the corresponding Rayleigh ranges in the 
(x, z) and (y, z) planes, respectively. For an iso- 
tropic HG beam the two waists coincide and have 
equal diameters, so that eq. (12) reduces to eq. ( 11 ). 
It follows that isotropic HG beams of the same order 
n + m have the same G0uy phase. But for the astig- 
matic HG beam ~x ar id ly  are different functions of 
z so that the relative phase of HG modes of the same 
order, but with differen i n and m, is a function of z. 

It should be realized that neither a LG beam, nor 
a HG beam when passed through a cylindrical lens 
at an arbitrary angle relative to the mode pattern, can 
be described in the same way, since the amplitude of 
these beams is not separable in x and y. For such 
beams (and also for more general beams) one should 
decompose the transverse pattern into HG modes 
oriented along the axes of the lens. Since in an as- 
tigmatic beam the relative phase of these HG com- 
ponents changes upon propagation, the transverse 
pattern of these astigmatic beams will change ac- 
cordingly. This applies to the cases considered in ref. 
[5]. 

4. M o d e  converter 

In order to exploit the Gouy phase to construct a 
mode converter, the b~am should be m a d e  astig- 
matic in a confined regio n only, while it is isotropic 
outside this region. When the beam is passed through 
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this region, a definite phase difference will be intro- 
duced between the HG components which are ori- 
ented along the axes of astigmatism. Consider for ex- 
ample an astigmatic beam for which the waists 
coincide but have different Rayleigh ranges, z ~  and 
ZRe, respectively (fig. 2a). At the position where the 
two transverse radii of the astigmatic beam are equal, 
a cylindrical lens may be placed to match the radii 
of curvature of  the beam such that the beam outside 
the lens is no longer astigmatic (fig. 2b). When the 
same cylindrical lens is also placed on the other side 
of  the waist and if the input beam is properly mode- 
matched, the beam is astigmatic only between the 
two lenses (fig. 2c). The condition that the trans- 
verse radii of  the beam (given by eq. (4) )  are equal 
at the position of the lens z =  + d  leads to 

2 2 + d 2  - g2e+d2 , (15) 

ZRx ZRy 

and the condition that the input beam is mode- 
matched is fulfilled if the focal distance f o f  the cy- 
lindrical lenses satisfies (see eq. (3) ) ,  

1 1 1 d d 
f -  Rx( d) Re(d ) _ z 2  + d 2 z2r + d2 . (16) 

It is useful to introduce a parameter p such that 

N/ i  d / f  (17) 
P= +d/ f"  

Equations ( 15 ), (16)  then lead to 

z ~ = d p ,  (18) 

zRy = d /p .  ( 19 ) 

d / d 2d 
<-~ ..... <--> < > y 

(a) (b) (c) 

Fig. 2. Sketch of a symmetric mode converter. The dashed curve 
denotes the gaussian beam envelope in the (x, z) plane, and the 
solid curve that in the (y, z) plane. (a) An astigmatic waist at 
z=0. (b) A cylindrical lens matches the radii of corvature at z=d. 
(c) Two cylindrical lenses act as a converter on a mode-matched 
beam. 

The change in Gouy phase ¥ (z )  of  a HG mode ori- 
ented along the axes of  the lenses, when passed 
through this region, is, using eq. (12), 

Ag'= ( n + m +  1 ) (AVx+A~y) /2  

+ ( n - m )  (A~Ux - A~/y)/2, (20) 

with 

A~Ux = yx(d) - ¢ ¢ x ( - d )  =2  arctan(d/z~)  (21) 

and analogously for Ac,y. 
We now consider a 'diagonal' H G  mode which is 

passed through the converter of fig. 2c and expand 
the input" mode into HG modes of the same order 
n + m oriented along the lens axes (eq. (10)) .  The 
successive terms in this expansion differ by two in 
the value of ( n - m ) .  Therefore the total phase dif- 
ference which is introduced between successive terms 
is 

0 = 2 [ arctan (d/ZR~) -- arctan (d/zRy) ] 

= 2 [ arctan ( 1/p) - arctan p ] . (22) 

The phase difference is thus determined by the pa- 
rameter p only and ranges from 0 to 7t. 

If  this phase difference is set equal to zt/2 the sys- 
tem introduces a factor i k in front of each term in the 
expansion of eq. (10), so that the H G  mode is con- 
vetted into a LG mode with the same indices n, m 
(eq. (8) ) .  The condition 0 = n / 2  is fulfilled if 
p =  - 1 +x//2, which leads to 

d = f / x / ~ .  (23) 

Mode-matching (eq. (19))  requires that the input 
beam has a Rayleigh range (cf. fig. 2c) 

Z R y = f + d =  ( l + 1 / x / ~ ) f  . (24) 

We will call this converter, which converts a diago- 
nal HG mode to a LG mode, a 'n /2  converter', re- 
ferring to the value of 0. Of  course the argument can 
also be reversed: the n/2 relative phase different be- 
tween the components of  the LG mode can be re- 
moved with a n/2 converter, so that a HG mode is 
produced. 

The converter with 0= n, the 'n converter', implies 
p =  0, and therefore 

d = f  z~,/f=O, ZRy/f=oo, (25) 

which corresponds to a confocal configuration of the 
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cylindrical lenses with a collimated incident beam. 
Note that the ideal 7t converter exists only in the geo- 
metrical optical limit. In practice, i.e. in a wave-op- 
tical description, ZRx and ZRy are always finite, so that 
0= n -  E instead of 7t. In a diffraction-limited system, 

can be made arbitrarily small by making the system 
(and incident-beam diameter) sufficiently large. In 
the geometrical optical limit, the lens system ex- 
changes the left and the right side of  the beam, so 
that a diagonal HG mode U,mHG is converted to 
u ~ ,  and a LG mode u,L~ is converted to uL~, which 
has an azimuthal dependence of the opposite sign. 

The 7t/2 and 7t converters are compared in fig. 3; 
here we have varied the distance between the cylin- 
drical lenses, keeping their focal length constant. It 
illustrates that a 7t/2 converter generally requires a 
tightly focussed input beam, whereas a n converter 
operates on a collimated beam. 

Obviously, such converters can also be con- 
strutted by using two cylindrical mirrors. Another 
possibility would be to exploit the astigmatism fur- 
nished by an off-axis configuration of spherical len- 
ses and/or  mirrors. 

5. Exper iments  

For testing the mode converters described in sect. 
4, we used a HeNe laser consisting of a gain tube of 
35 cm length with Brewster windows (Spectra Phys- 
ics 120S) in a two-mirror cavity (fig. 4). As we 
wanted this laser to operate in a higher-order trans- 

(a) (b) 

f f f f 

2f 

Fig. 3. Comparison of (a) a n/2 convener and (b) a it converter. 
Both converters consist of two identical cylindrical lenses of focal 
length f, they focus in the plane of the paper. The distance be- 
tween the lenses is fv/2 for the ~t/2 converter and 2ffor the 7t 
converter. Dashed lines indicate the propagation of the beam in 
the other transverse direction. 

verse mode, we had to make the Fresnel number of 
the cavity as large as possible. Since the bore of  the 
gain tube ( ~  1.8 m m )  iS the effective aperture in the 
cavity, this implies a small beam diameter at the 
Brewster windows. From eq. (4) it follows that the 
beam radius at a distance d from the waist has a min- 
imum for ZR=d. Therefore we chose the position of 
the waist in the middle of  the tube, with a Rayleigh 
range of about half the  length of the tube (zR~ 18 
cm).  This was obtained i with two commercial HeNe 
laser mirrors, one with 600 mm radius of curvature, 
placed at 525 mm fromlthe middle of  the gain tube, 
and the other with 437 mm radius of curvature, 
placed at 306 mm from the middle of  the tube. The 
first mirror was a high-¢eflector for 633 nm, the sec- 
ond mirror was an output coupler with 1.2% trans- 
mission. In order to force the laser to operate in a 
higher-order Hermite-gaussian mode, two metal 
wires of  20 ttm diamet 
inside the cavity in fro 
vertical and the other ht 
to the beam. The wires 
the higher-order H G  m 
the position of the win 

~r were carefully positioned 
at of the high-reflector, one 
brizontal, both perpendicular 
force the laser to operate in 
~de which has nodal lines at 

Any mode of order 0 up to 
3 could be made this way, with output powers be- 
tween 0.5 and 5 mW. 

We first tested the o~ eration of the rc/2 converter 
by mode-matching a cLiagonal' HG laser beam to 
such a converter by m~:ans of two spherical lenses. 
The cylindrical lenses ~f the converter had a focal 
distance of 19 mm, whle  the Rayleigh range of the 
input beam and the distance between the lenses were 
chosen according to eqs. (23), (24). A lens with a 
short focal length projected the output mode on to 
a screen, and this output pattern was photographed. 
The results shown in fig. 5 illustrate the conversion 
of several input HG modes to corresponding LG 
modes. When the rt/2 Converter was rotated around 
the propagation axis of  the beam, an incoming HG 
beam was transformed to a HG mode when the con- 
verter was at 0 or 90 degrees and to a LG mode when 
the converter was at _+45 degrees (fig. 6a). In an- 
other experiment the I-IG laser mode was converted 
into a LG mode with a fixed rt/2 mode converter and 
then passed through a rotatable rt/2 converter, which 
transformed the mode back to a HG mode. The out- 
put mode was photographed with the second con- 
verter at various angles i(fig. 6b). The output is a HG 
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dl d 2 d 3 

M 1 W 

I 
BS 

HeNe M2 

1 

d4 d5 I 

f2 f3 f4 f5 

Fig. 4. Experimental arrangement use, t to demonstrate the operation of the n~ 2 mode converter. Two mutually perpendicular wires (W) 
are placed perpendicular to the mode axis inside a HeNe laser consisting of two mirrors (Mb R-600 mm and M2, R=437 mm) and a 
HeNe gain tube (HeNe). With a beat a splitter (BS) part of the output is split off and projected onto a screen with a lens of short focal 
length ~ ). The beam is mode-matched with lens f2 into a n/2 converter built with two cylindrical lenses (f3 and f4). The output is 
projected onto a screen with a lens ot short focal length (fs). Dimensions are: d~=525 mm, d2=306 ram, d3=225 mm, d4= 176 mm, 
d5=27 mm;fl =f5=20 ram,f2= 160 n Lm,f3 =f4= 19 mm (cylindrical). 

il ii] . . . . . . . . .  . . . . .  ii I i i i~  

Fig. 5. Experimental results obtained with the x/2 converter. The top row shows the input HG,m mode; the bottom the output LG,m 
mode, where n, m is indicated above tile modes. 

mode which is always at 45 degrees with respect to 
the axes of the lenses of the co nverter. 

To test the n converter we mounted such a con- 
verter in the rotatable mount  and passed a colli- 
mated HG beam through it. q[ he output  is again a 
HG mode which rotates twic(: as fast as the con- 
vener ,  as shown in fig. 7. 

To interpret these results it is helpful to keep in 
mind  the resemblance betweer decomposit ion of a 
mode pattern on the one h a n d ,  n d  decomposit ion of 
polarization on the other hand,, as pointed out in ref. 
[2]. A quarter-wave plate converts linearly to cir- 
cularly polarized light by introducing a n/2 phase 
difference between the linear]y polarized compo- 

nents and is therefore analogous to the n / 2  mode 
converter, which converts a HG mode into a LG 

mode by introducing a it/2 phase difference between 
the HG components.  A half-wave plate converts left- 
handed to right-handed circularly polarized light by 
introducing a n phase difference and is therefore 
similar to the n converter. 

Using this analogy, the experiment of fig. 6a is 
similar to passing a linearly polarized beam through 
a rotating quarter-wave plate. Depending on the ori- 
entat ion of the plate, this would result in a circularly 
or linearly polarized beam. The experiment of fig. 6b 
is similar to passing a circularly polarized beam 
through a rotating quarter-wave plate. In this case 
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Fig. 6. Experimental results obtained with the ~t/2 converter at different anodes, (a) with an input HGo2 mode and (b) with an input 
LGo2 mode. The left-most pattern in each row is the input, on the right are the output patterns with!the angle of the converter indicated 
below. 

Fig. 7. Experimental re'~lts obtained with the x converter at different anodes. On the left is the inpu t HGo2 mode, on the right the output 
patterns. 

the output would be a linearly polarized beam whose 
polarization axis is at 45 degrees with respect to the 
axes o f  the plate. The last experiment (fig. 7) is sim- 
ilar to passing a linearly polarized beam through a 
half-wave plate. This would result in a linearly po- 
larized beam whose polarization axis rotates twice as 
fast as the plate. 

Note that in the paraxial approximation the po- 
larization decomposit ion is two-dimensional, 
spanned by two polarization vectors. The mode de- 
composition has dimension N +  1 for a mode o f  or- 

der N since such a mode can be expressed as a su- 
perposition o f  N +  1 modes o f  the same order. 

6. Angular momentumi transfer 

Now that we have studied in detail how a HG mode 
may be converted to a L G mode we remind the reader 
that it has been established previously that a LG 
beam carders orbital ~mgular momentum whereas a 
H G  beam does not [ 2 ]. It may thus be expected that 
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the transformation leads to a mechanical torque on 
the converter. We are preparing an experiment to in- 
vestigate this issue. Here we wish to address theo- 
retically the question where precisely, that is at which 
cylindrical lens, the transfer of angular momentum 
will take place. We consider a linearly polarized mode 
with vector potential A=e u(x, y, z) e x p ( - i k z )  in 
the Lorentz gauge (with e the polarization vector), 
where u(x, y, z) is a solution of the paraxial wave 
equation. The time-averaged angular momentum 
density of  this mode has a component in the direc- 
tion of propagation given by [ 2 ] 

Mz=iOg,o/2[(xu. ~ v On*' -xu ) 

-(yu* Ou Ou*~] 
Ux -yU~x)J 

= -OJeo(OOt/O0)[u[ 2 , (26) 

with a = arg u. The angular momentum density per 
unit length in the direction of propagation is 

L~= i i dxdyMz. (27) 
- - O o  - - o o  

For a H G  mode we deduce from eq. ( 1 ) the phase 
of  u 

or= -kr2/2R(z) - ( n+ m+ 1 ) gt(z) (28) 

and substitution in eq. (26) yields that the angular 
momentum of such a mode is zero. For a LG mode 
we deduce from eq. (2) 

Or= -krZ /2R ( z ) 

- (n+m+ 1 )¥(z) - (n-m)(b, (29) 

so that the ~ derivative leads to an angular momen- 
tum proportional to n - m .  It has been shown pre- 
viously that it is in fact equal to ( n - m ) h  per photon 
[ 2 ]. As the mode is linearly polarized, the intrinsic 
spin angular momentum is zero and the angular mo- 
mentum found here is orbital angular momentum. 

The ~t/2 converter transforms a H G  mode without 
orbital angular momentum to a LG mode with or- 
bital angular momentum. It might be anticipated that 
the transfer of angular momentum takes place at both 
lenses, but it turns out that this is not the case. For 
any mode u(x, y, z) which is a solution of  the par- 

axial wave equation, the angular momentum is given 
by eqs. (26), (27). When this mode is passed 
through a lens it acquires an extra phase Z which is 
a function of the transverse coordinates ~, so that 
the mode function directly after the lens can be writ- 
ten as 

u ' =  u exp [i~f(x, y) ] . (30) 

In ref. [ 11 ] it is shown that 

L~(u')=Lz(u) + SL~ , (31) 

with 

- - a o  - - o o  

×lu(x,y,z) l 2. (32) 

For a cylindrical lens we have X =  - ½ (k/f)x 2, so that 

8Lz=-CO~o i i dxdy(k / f )xYlu(x ,y , z ) ,2 .  
- - o o  - - o o  

(33) 

This may be normalized against the energy in the 
beam to yield the angular momentum transferred to 
the lens per photon. For a LG mode, as l u l l  2 is 
symmetric around the z axis, 8L~ is zero. A diagonal 
H G  mode with m ~ n, however, has unequal inten- 
sities in the four xy quadrants, which leads to 8Lz~ 0. 
The conclusion is that in the n/2  converter, with a 
H G  mode ( m S  n) incident on one side and a LG 
mode exciting from the other, the angular momen- 
tum conversion is expected to take place only at the 
lens which sees the input H G  mode. It follows that 
the astigmatic H G  mode just after the first lens al- 
ready contains the orbital angular momentum of the 
output LG mode. The function of the second lens is 
to change the astigmatic beam into a pure LG mode. 
For the same reason, if a LG mode is incident on a 
n/2  converter and is converted into a H G  mode, the 
transfer of  orbital angular momentum is expected to 
take place at the second lens. 

In fact, for a macroscopic lossless dielectric object 
such as a lens the radiative force is a conservative 
force ("gradient force") which is derived from the 

#~ writing the operation of the lens as a phase factor is only cor- 
rect for a lens whose principal planes coincide, i.e. a thin lens. 
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dielectric polarization energy as the potential [ 12 ]. 
Dielectric matter is drawn to positions where the 
electric field strength is largest (as an example, when 
the plates of  a capacitor are dipped into a dielectric 
fluid, the fluid is drawn into the volume between the 
plates). This explains why the transfer of  angular 
momentum, that is the mechanical torque, occurs at 
the ' H G  side' of the 7t/2 converter only. For a cy- 
lindrical lens in a H G  beam the dielectric polariza- 
tion energy clearly depends on the angle between the 
cylinder axis and the H G  axes x and y. The cylin- 
drical lens will tend to align with the maximum op- 
tical intensity inside the dielectric. A radiative torque 
on the lens results unless the polarization energy is 
minimum or maximum, that is unless the cylinder 
axis is aligned with x or y. For a cylinder lens in a 
LG beam the radiative torque is zero as the polari- 
zation energy is independent of  its orientation. 

It follows from eq. (33), and also from the energy 
arguments above, that the change in orbital angular 
momentum may in principle be made arbitrarily high 
by choosing the lens arbitrarily strong ( f - ,0) .  It fol- 
lows similarly that the orbital angular momentum 
may be changed by astigmatic elements other than 
a cylinder lens (e.g. a prism). Also, for similar rea- 
sons, a LG mode with an angular sector removed with 
a suitable mask will transfer orbital angular momen- 
tum to a cylindrical lens. However, all such opera- 
tions will not lead to a gaussian mode at the output 
and thus do not correspond to a well-defined mode 
conversion. 

The 7t converter seems an anomaly in this context. 
I f  the perfect ~t converter has a LG mode incident at 
the first lens, a LG mode of opposite handedness will 
leave the second lens. According to the arguments 
given above it appears that there is no orbital an- 
gular momentum exchange on either of the lenses, 
although the orbital angular momentum of the beam 
changes sign. As noted in sect. 4, however, a perfect 
7t converter does not exist. I f  a perfect LG mode is 
incident on a practical converter, the output mode 
will always, however slightly, differ from a perfect 
LG mode, which invalidates the analysis give above. 
An appropriate analysis of  this converter has been 
given by Van Enk and Nienhuis [ l I ]. 

7. Conclus ions  

We have shown that it is possible to build a mode 
converter with two cylindrical lenses which converts 
a Hermite-gaussian mode or arbitrary order into a 
Laguerre-gaussian mode of the same order and vice 
versa. The conversion is described using a mode 
analysis, based on the decomposition of a LG mode 
and a diagonally oriented HG mode into Hermite-  
gaussians. Two converters are introduced: the 7t/2 
converter which converts a H G  to a LG mode or vice 
versa, and the 7t converter which exchanges the in- 
dices of tl~e incoming mode and thereby converts a 
LG mode into one with opposite azimuthal depen- 
dence. We have demonstrated these conversions ex- 
perimentally and have  shown the analogy between 
the mode converters and half- and quarter-wave 
plates. The transfer of  orbital angular momentum, 
occurring when a H G  mode without orbital angular 
momentum is converted into a LG mode with or- 
bital angular momentum, is shown to take place at 
the lens onto which the H G  mode is incident. 
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