Problem 3) a) The function $(\Delta x)^{-1} \operatorname{rect}[(x - n\Delta x)/\Delta x]$ is a rectangular pulse of width Δx and height $(\Delta x)^{-1}$, centered at $x = n\Delta x$, as depicted in the figure below. In the limit when $\Delta x \to 0$ while $n = (x_0/\Delta x) \to \infty$, the rectangular pulse function approaches $\delta(x - x_0)$.

b) Multiplying the sampled values of f(x) at $x = n\Delta x$ into rectangular pulses of width Δx centered at $x = n\Delta x$, we arrive at the following approximate form for f(x):

$$f(x) \cong \sum_{n=-\infty}^{\infty} f(n\Delta x) \operatorname{rect}[(x - n\Delta x)/\Delta x].$$
(1)

The multiplication of each rect(·) function by $(\Delta x)^{-1}\Delta x$ does not change the above equation. However, in the limit when $\Delta x \rightarrow 0$ and $n\Delta x \rightarrow x'$, the properly scaled and shifted rect(·) functions are replaced by shifted δ -functions, as follows:

$$f(x) = \lim_{\Delta x \to 0} \sum_{n=-\infty}^{\infty} f(n\Delta x) (\Delta x)^{-1} \operatorname{rect}[(x - n\Delta x)/\Delta x] \Delta x = \int_{-\infty}^{\infty} f(x') \delta(x - x') dx'.$$
(2)

This, of course, is nothing more nor less than a convolution operation between f(x) and $\delta(x)$. Note that Eq.(2) is consistent with the sifting property of the δ -function, considering that the value of f(x') at the location x' = x of the δ -function along the x'-axis is f(x).

c) According to Eq.(2), the input function f(x) is the sum of an infinite number of shifted δ -functions, namely, $\delta(x - x')$, each multiplied by f(x')dx'. Since the system is shift-invariant, its response to $\delta(x - x')$ will be h(x - x'). The linearity of the system implies that its response to $f(x')\delta(x - x')dx'$ will be f(x')h(x - x')dx'. The sum of all the scaled δ -function inputs must, therefore, produce the sum of the corresponding outputs (again, due to the linearity of the system). Consequently,

$$g(x) = \int_{-\infty}^{\infty} f(x')h(x - x')dx'.$$
 (3)

The output g(x) of an LSI system is thus seen to be the convolution between the input function, f(x), and the impulse-response function, h(x).